summaryrefslogtreecommitdiff
path: root/numpy/lib/npyio.py
diff options
context:
space:
mode:
authorMark Wiebe <mwwiebe@gmail.com>2011-01-28 16:27:56 -0800
committerMark Wiebe <mwwiebe@gmail.com>2011-01-28 16:27:56 -0800
commit67e5476a4178de55451501cfb01794c22d340b7a (patch)
tree2a24b021001658deb92230692f8fad62e9355791 /numpy/lib/npyio.py
parentcdac1209a517bf0808f12340d21ac9d334f69485 (diff)
parentaedce0eb9fa63e7dec3c865374a64e11374c284c (diff)
downloadnumpy-67e5476a4178de55451501cfb01794c22d340b7a.tar.gz
Merge branch 'new_iterator' - new iterator, ufunc update, restore 1.5 ABI
New Iterator - Read doc/neps/new-iterator-ufunc.rst. UFunc Update - Change all ufunc functions to use the new iterator. This replaces the inline buffering with iterator buffering, except for the reductions and generalized ufunc which use updateifcopy at the moment. Also adds out= and order= parameters to all ufuncs. Restore 1.5 ABI - This was done by moving the new type numbers to the end of the type enumeration, and replacing all type promotion code with a table-based approach. The ArrFuncs was restored by putting the new type cast functions into the cast dictionary, originally designed just for custom types. Conflicts: numpy/core/src/multiarray/ctors.c numpy/core/tests/test_regression.py
Diffstat (limited to 'numpy/lib/npyio.py')
-rw-r--r--numpy/lib/npyio.py60
1 files changed, 38 insertions, 22 deletions
diff --git a/numpy/lib/npyio.py b/numpy/lib/npyio.py
index 34bbd1469..3f4db4593 100644
--- a/numpy/lib/npyio.py
+++ b/numpy/lib/npyio.py
@@ -683,19 +683,44 @@ def loadtxt(fname, dtype=float, comments='#', delimiter=None,
X = []
def flatten_dtype(dt):
- """Unpack a structured data-type."""
+ """Unpack a structured data-type, and produce re-packing info."""
if dt.names is None:
# If the dtype is flattened, return.
# If the dtype has a shape, the dtype occurs
# in the list more than once.
- return [dt.base] * int(np.prod(dt.shape))
+ shape = dt.shape
+ if len(shape) == 0:
+ return ([dt.base], None)
+ else:
+ packing = [(shape[-1], tuple)]
+ if len(shape) > 1:
+ for dim in dt.shape[-2:0:-1]:
+ packing = [(dim*packing[0][0],packing*dim)]
+ packing = packing*shape[0]
+ return ([dt.base] * int(np.prod(dt.shape)), packing)
else:
types = []
+ packing = []
for field in dt.names:
tp, bytes = dt.fields[field]
- flat_dt = flatten_dtype(tp)
+ flat_dt, flat_packing = flatten_dtype(tp)
types.extend(flat_dt)
- return types
+ packing.append((len(flat_dt),flat_packing))
+ return (types, packing)
+
+ def pack_items(items, packing):
+ """Pack items into nested lists based on re-packing info."""
+ if packing == None:
+ return items[0]
+ elif packing is tuple:
+ return tuple(items)
+ else:
+ start = 0
+ ret = []
+ for length, subpacking in packing:
+ ret.append(pack_items(items[start:start+length], subpacking))
+ start += length
+ return tuple(ret)
def split_line(line):
"""Chop off comments, strip, and split at delimiter."""
@@ -724,7 +749,7 @@ def loadtxt(fname, dtype=float, comments='#', delimiter=None,
first_vals = split_line(first_line)
N = len(usecols or first_vals)
- dtype_types = flatten_dtype(dtype)
+ dtype_types, packing = flatten_dtype(dtype)
if len(dtype_types) > 1:
# We're dealing with a structured array, each field of
# the dtype matches a column
@@ -732,6 +757,8 @@ def loadtxt(fname, dtype=float, comments='#', delimiter=None,
else:
# All fields have the same dtype
converters = [defconv for i in xrange(N)]
+ if N > 1:
+ packing = [(N, tuple)]
# By preference, use the converters specified by the user
for i, conv in (user_converters or {}).iteritems():
@@ -753,27 +780,16 @@ def loadtxt(fname, dtype=float, comments='#', delimiter=None,
vals = [vals[i] for i in usecols]
# Convert each value according to its column and store
- X.append(tuple([conv(val) for (conv, val) in zip(converters, vals)]))
+ items = [conv(val) for (conv, val) in zip(converters, vals)]
+ # Then pack it according to the dtype's nesting
+ items = pack_items(items, packing)
+
+ X.append(items)
finally:
if own_fh:
fh.close()
- if len(dtype_types) > 1:
- # We're dealing with a structured array, with a dtype such as
- # [('x', int), ('y', [('s', int), ('t', float)])]
- #
- # First, create the array using a flattened dtype:
- # [('x', int), ('s', int), ('t', float)]
- #
- # Then, view the array using the specified dtype.
- try:
- X = np.array(X, dtype=np.dtype([('', t) for t in dtype_types]))
- X = X.view(dtype)
- except TypeError:
- # In the case we have an object dtype
- X = np.array(X, dtype=dtype)
- else:
- X = np.array(X, dtype)
+ X = np.array(X, dtype)
X = np.squeeze(X)
if unpack: