summaryrefslogtreecommitdiff
path: root/numpy/lib/shape_base.py
diff options
context:
space:
mode:
authorAlan McIntyre <alan.mcintyre@local>2008-07-05 14:26:16 +0000
committerAlan McIntyre <alan.mcintyre@local>2008-07-05 14:26:16 +0000
commit36e02207c1a82fe669531dd24ec799eca2989c80 (patch)
tree104f800d6800c4a01a0aecac323a8a70517aa94b /numpy/lib/shape_base.py
parentf07e385b69ee59ef6abe05f164138dc6a7279291 (diff)
downloadnumpy-36e02207c1a82fe669531dd24ec799eca2989c80.tar.gz
Use the implicit "import numpy as np" made available to all doctests instead
of explicit imports or dependency on the local scope where the doctest is defined..
Diffstat (limited to 'numpy/lib/shape_base.py')
-rw-r--r--numpy/lib/shape_base.py70
1 files changed, 33 insertions, 37 deletions
diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py
index 77f158eb3..afdb879e4 100644
--- a/numpy/lib/shape_base.py
+++ b/numpy/lib/shape_base.py
@@ -192,13 +192,13 @@ def vstack(tup):
tup -- sequence of arrays. All arrays must have the same
shape.
Examples:
- >>> a = array((1,2,3))
- >>> b = array((2,3,4))
+ >>> a = np.array((1,2,3))
+ >>> b = np.array((2,3,4))
>>> np.vstack((a,b))
array([[1, 2, 3],
[2, 3, 4]])
- >>> a = array([[1],[2],[3]])
- >>> b = array([[2],[3],[4]])
+ >>> a = np.array([[1],[2],[3]])
+ >>> b = np.array([[2],[3],[4]])
>>> np.vstack((a,b))
array([[1],
[2],
@@ -222,14 +222,13 @@ def hstack(tup):
tup -- sequence of arrays. All arrays must have the same
shape.
Examples:
- >>> import numpy
- >>> a = array((1,2,3))
- >>> b = array((2,3,4))
- >>> numpy.hstack((a,b))
+ >>> a = np.array((1,2,3))
+ >>> b = np.array((2,3,4))
+ >>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
- >>> a = array([[1],[2],[3]])
- >>> b = array([[2],[3],[4]])
- >>> numpy.hstack((a,b))
+ >>> a = np.array([[1],[2],[3]])
+ >>> b = np.array([[2],[3],[4]])
+ >>> np.hstack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
@@ -253,10 +252,9 @@ def column_stack(tup):
tup -- sequence of 1D or 2D arrays. All arrays must have the same
first dimension.
Examples:
- >>> import numpy
- >>> a = array((1,2,3))
- >>> b = array((2,3,4))
- >>> numpy.column_stack((a,b))
+ >>> a = np.array((1,2,3))
+ >>> b = np.array((2,3,4))
+ >>> np.column_stack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
@@ -283,16 +281,15 @@ def dstack(tup):
tup -- sequence of arrays. All arrays must have the same
shape.
Examples:
- >>> import numpy
- >>> a = array((1,2,3))
- >>> b = array((2,3,4))
- >>> numpy.dstack((a,b))
+ >>> a = np.array((1,2,3))
+ >>> b = np.array((2,3,4))
+ >>> np.dstack((a,b))
array([[[1, 2],
[2, 3],
[3, 4]]])
- >>> a = array([[1],[2],[3]])
- >>> b = array([[2],[3],[4]])
- >>> numpy.dstack((a,b))
+ >>> a = np.array([[1],[2],[3]])
+ >>> b = np.array([[2],[3],[4]])
+ >>> np.dstack((a,b))
array([[[1, 2]],
<BLANKLINE>
[[2, 3]],
@@ -432,12 +429,11 @@ def hsplit(ary,indices_or_sections):
Related:
hstack, split, array_split, vsplit, dsplit.
Examples:
- >>> import numpy
- >>> a= array((1,2,3,4))
- >>> numpy.hsplit(a,2)
+ >>> a= np.array((1,2,3,4))
+ >>> np.hsplit(a,2)
[array([1, 2]), array([3, 4])]
- >>> a = array([[1,2,3,4],[1,2,3,4]])
- >>> hsplit(a,2)
+ >>> a = np.array([[1,2,3,4],[1,2,3,4]])
+ >>> np.hsplit(a,2)
[array([[1, 2],
[1, 2]]), array([[3, 4],
[3, 4]])]
@@ -482,9 +478,9 @@ def vsplit(ary,indices_or_sections):
vstack, split, array_split, hsplit, dsplit.
Examples:
import numpy
- >>> a = array([[1,2,3,4],
- ... [1,2,3,4]])
- >>> numpy.vsplit(a,2)
+ >>> a = np.array([[1,2,3,4],
+ ... [1,2,3,4]])
+ >>> np.vsplit(a,2)
[array([[1, 2, 3, 4]]), array([[1, 2, 3, 4]])]
"""
@@ -519,8 +515,8 @@ def dsplit(ary,indices_or_sections):
Related:
dstack, split, array_split, hsplit, vsplit.
Examples:
- >>> a = array([[[1,2,3,4],[1,2,3,4]]])
- >>> dsplit(a,2)
+ >>> a = np.array([[[1,2,3,4],[1,2,3,4]]])
+ >>> np.dsplit(a,2)
[array([[[1, 2],
[1, 2]]]), array([[[3, 4],
[3, 4]]])]
@@ -596,15 +592,15 @@ def tile(A, reps):
Examples:
- >>> a = array([0,1,2])
- >>> tile(a,2)
+ >>> a = np.array([0,1,2])
+ >>> np.tile(a,2)
array([0, 1, 2, 0, 1, 2])
- >>> tile(a,(1,2))
+ >>> np.tile(a,(1,2))
array([[0, 1, 2, 0, 1, 2]])
- >>> tile(a,(2,2))
+ >>> np.tile(a,(2,2))
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
- >>> tile(a,(2,1,2))
+ >>> np.tile(a,(2,1,2))
array([[[0, 1, 2, 0, 1, 2]],
<BLANKLINE>
[[0, 1, 2, 0, 1, 2]]])