diff options
author | David Freese <dfreese@stanford.edu> | 2014-02-16 08:51:16 -0800 |
---|---|---|
committer | David Freese <dfreese@stanford.edu> | 2014-05-02 08:57:27 -0700 |
commit | beec75be6f96a5c0fc9496b587e68eb03bb4a6ba (patch) | |
tree | a5bfadd37ec0ffdb9249d18d21179d25e8c9ec32 /numpy/lib/tests/test_nanfunctions.py | |
parent | a0cf18394d5ce33514fdc37093bd2f65ad4b0dde (diff) | |
download | numpy-beec75be6f96a5c0fc9496b587e68eb03bb4a6ba.tar.gz |
ENH: added functionality nanmedian to numpy
Implemented a nanmedian and associated tests as an
extension of np.median to complement the other
nanfunctions
Added negative values to the unit tests
Cleaned up documentation of nanmedian
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r-- | numpy/lib/tests/test_nanfunctions.py | 98 |
1 files changed, 94 insertions, 4 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py index f00aa0165..74a50edf4 100644 --- a/numpy/lib/tests/test_nanfunctions.py +++ b/numpy/lib/tests/test_nanfunctions.py @@ -11,15 +11,15 @@ from numpy.testing import ( # Test data _ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170], - [0.5351, 0.9403, np.nan, 0.2100, 0.4759, 0.2833], - [np.nan, np.nan, np.nan, 0.1042, np.nan, 0.5954], + [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833], + [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954], [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]]) # Rows of _ndat with nans removed _rdat = [np.array([ 0.6244, 0.2692, 0.0116, 0.1170]), - np.array([ 0.5351, 0.9403, 0.2100, 0.4759, 0.2833]), - np.array([ 0.1042, 0.5954]), + np.array([ 0.5351, -0.9403, 0.2100, 0.4759, 0.2833]), + np.array([ 0.1042, -0.5954]), np.array([ 0.1610, 0.1859, 0.3146])] @@ -527,5 +527,95 @@ class TestNanFunctions_MeanVarStd(TestCase): assert_(np.isscalar(res)) +class TestNanFunctions_Median(TestCase): + + def test_mutation(self): + # Check that passed array is not modified. + ndat = _ndat.copy() + np.nanmedian(ndat) + assert_equal(ndat, _ndat) + + def test_keepdims(self): + mat = np.eye(3) + for axis in [None, 0, 1]: + tgt = np.median(mat, axis=axis, out=None, overwrite_input=False) + res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False) + assert_(res.ndim == tgt.ndim) + + def test_out(self): + mat = np.random.rand(3,3) + resout = np.zeros(3) + tgt = np.median(mat, axis=1) + res = np.nanmedian(mat, axis=1, out=resout) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + + def test_result_values(self): + tgt = [np.median(d) for d in _rdat] + res = np.nanmedian(_ndat, axis=1) + assert_almost_equal(res, tgt) + + def test_allnans(self): + mat = np.array([np.nan]*9).reshape(3, 3) + for axis in [None, 0, 1]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_(np.isnan(np.nanmedian(mat, axis=axis)).all()) + if axis is None: + assert_(len(w) == 1) + else: + assert_(len(w) == 3) + assert_(issubclass(w[0].category, RuntimeWarning)) + # Check scalar + assert_(np.isnan(np.nanmedian(np.nan))) + if axis is None: + assert_(len(w) == 2) + else: + assert_(len(w) == 4) + assert_(issubclass(w[0].category, RuntimeWarning)) + + def test_empty(self): + mat = np.zeros((0, 3)) + for axis in [0, None]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_(np.isnan(np.nanmedian(mat, axis=axis)).all()) + assert_(len(w) == 1) + assert_(issubclass(w[0].category, RuntimeWarning)) + for axis in [1]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_equal(np.nanmedian(mat, axis=axis), np.zeros([])) + assert_(len(w) == 0) + + def test_scalar(self): + assert_(np.nanmedian(0.) == 0.) + + def test_extended_axis_invalid(self): + d = np.ones((3, 5, 7, 11)) + assert_raises(IndexError, np.nanmedian, d, axis=-5) + assert_raises(IndexError, np.nanmedian, d, axis=(0, -5)) + assert_raises(IndexError, np.nanmedian, d, axis=4) + assert_raises(IndexError, np.nanmedian, d, axis=(0, 4)) + assert_raises(ValueError, np.nanmedian, d, axis=(1, 1)) + + def test_keepdims(self): + d = np.ones((3, 5, 7, 11)) + assert_equal(np.nanmedian(d, axis=None, keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.nanmedian(d, axis=(0, 1), keepdims=True).shape, + (1, 1, 7, 11)) + assert_equal(np.nanmedian(d, axis=(0, 3), keepdims=True).shape, + (1, 5, 7, 1)) + assert_equal(np.nanmedian(d, axis=(1,), keepdims=True).shape, + (3, 1, 7, 11)) + assert_equal(np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.nanmedian(d, axis=(0, 1, 3), keepdims=True).shape, + (1, 1, 7, 1)) + + + + if __name__ == "__main__": run_module_suite() |