summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_nanfunctions.py
diff options
context:
space:
mode:
authorDavid Freese <dfreese@stanford.edu>2014-02-16 08:51:16 -0800
committerDavid Freese <dfreese@stanford.edu>2014-05-02 08:57:27 -0700
commitbeec75be6f96a5c0fc9496b587e68eb03bb4a6ba (patch)
treea5bfadd37ec0ffdb9249d18d21179d25e8c9ec32 /numpy/lib/tests/test_nanfunctions.py
parenta0cf18394d5ce33514fdc37093bd2f65ad4b0dde (diff)
downloadnumpy-beec75be6f96a5c0fc9496b587e68eb03bb4a6ba.tar.gz
ENH: added functionality nanmedian to numpy
Implemented a nanmedian and associated tests as an extension of np.median to complement the other nanfunctions Added negative values to the unit tests Cleaned up documentation of nanmedian
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r--numpy/lib/tests/test_nanfunctions.py98
1 files changed, 94 insertions, 4 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py
index f00aa0165..74a50edf4 100644
--- a/numpy/lib/tests/test_nanfunctions.py
+++ b/numpy/lib/tests/test_nanfunctions.py
@@ -11,15 +11,15 @@ from numpy.testing import (
# Test data
_ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170],
- [0.5351, 0.9403, np.nan, 0.2100, 0.4759, 0.2833],
- [np.nan, np.nan, np.nan, 0.1042, np.nan, 0.5954],
+ [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833],
+ [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954],
[0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]])
# Rows of _ndat with nans removed
_rdat = [np.array([ 0.6244, 0.2692, 0.0116, 0.1170]),
- np.array([ 0.5351, 0.9403, 0.2100, 0.4759, 0.2833]),
- np.array([ 0.1042, 0.5954]),
+ np.array([ 0.5351, -0.9403, 0.2100, 0.4759, 0.2833]),
+ np.array([ 0.1042, -0.5954]),
np.array([ 0.1610, 0.1859, 0.3146])]
@@ -527,5 +527,95 @@ class TestNanFunctions_MeanVarStd(TestCase):
assert_(np.isscalar(res))
+class TestNanFunctions_Median(TestCase):
+
+ def test_mutation(self):
+ # Check that passed array is not modified.
+ ndat = _ndat.copy()
+ np.nanmedian(ndat)
+ assert_equal(ndat, _ndat)
+
+ def test_keepdims(self):
+ mat = np.eye(3)
+ for axis in [None, 0, 1]:
+ tgt = np.median(mat, axis=axis, out=None, overwrite_input=False)
+ res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False)
+ assert_(res.ndim == tgt.ndim)
+
+ def test_out(self):
+ mat = np.random.rand(3,3)
+ resout = np.zeros(3)
+ tgt = np.median(mat, axis=1)
+ res = np.nanmedian(mat, axis=1, out=resout)
+ assert_almost_equal(res, resout)
+ assert_almost_equal(res, tgt)
+
+ def test_result_values(self):
+ tgt = [np.median(d) for d in _rdat]
+ res = np.nanmedian(_ndat, axis=1)
+ assert_almost_equal(res, tgt)
+
+ def test_allnans(self):
+ mat = np.array([np.nan]*9).reshape(3, 3)
+ for axis in [None, 0, 1]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
+ if axis is None:
+ assert_(len(w) == 1)
+ else:
+ assert_(len(w) == 3)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+ # Check scalar
+ assert_(np.isnan(np.nanmedian(np.nan)))
+ if axis is None:
+ assert_(len(w) == 2)
+ else:
+ assert_(len(w) == 4)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+
+ def test_empty(self):
+ mat = np.zeros((0, 3))
+ for axis in [0, None]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
+ assert_(len(w) == 1)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+ for axis in [1]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_equal(np.nanmedian(mat, axis=axis), np.zeros([]))
+ assert_(len(w) == 0)
+
+ def test_scalar(self):
+ assert_(np.nanmedian(0.) == 0.)
+
+ def test_extended_axis_invalid(self):
+ d = np.ones((3, 5, 7, 11))
+ assert_raises(IndexError, np.nanmedian, d, axis=-5)
+ assert_raises(IndexError, np.nanmedian, d, axis=(0, -5))
+ assert_raises(IndexError, np.nanmedian, d, axis=4)
+ assert_raises(IndexError, np.nanmedian, d, axis=(0, 4))
+ assert_raises(ValueError, np.nanmedian, d, axis=(1, 1))
+
+ def test_keepdims(self):
+ d = np.ones((3, 5, 7, 11))
+ assert_equal(np.nanmedian(d, axis=None, keepdims=True).shape,
+ (1, 1, 1, 1))
+ assert_equal(np.nanmedian(d, axis=(0, 1), keepdims=True).shape,
+ (1, 1, 7, 11))
+ assert_equal(np.nanmedian(d, axis=(0, 3), keepdims=True).shape,
+ (1, 5, 7, 1))
+ assert_equal(np.nanmedian(d, axis=(1,), keepdims=True).shape,
+ (3, 1, 7, 11))
+ assert_equal(np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True).shape,
+ (1, 1, 1, 1))
+ assert_equal(np.nanmedian(d, axis=(0, 1, 3), keepdims=True).shape,
+ (1, 1, 7, 1))
+
+
+
+
if __name__ == "__main__":
run_module_suite()