diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2018-03-25 12:34:16 -0600 |
---|---|---|
committer | Charles Harris <charlesr.harris@gmail.com> | 2018-04-04 06:36:36 -0600 |
commit | 7e5a41de9fab731e27a761c01302a0a93e2d1070 (patch) | |
tree | dbd6265800ad401476bcde904e9bba86f6af2b85 /numpy/lib/tests/test_recfunctions.py | |
parent | 359e53ef8e479eefac0e184d4d25af50c2779ce0 (diff) | |
download | numpy-7e5a41de9fab731e27a761c01302a0a93e2d1070.tar.gz |
TST: Switch to using pytest markers
Use standard pytest markers everywhere in the numpy tests. At this point
there should be no nose dependency. However, nose is required to test
the legacy decorators if so desired.
At this point, numpy test cannot be run in the way with runtests, rather
installed numpy can be tested with `pytest --pyargs numpy` as long as
that is not run from the repo. Run it from the tools directory or some
such.
Diffstat (limited to 'numpy/lib/tests/test_recfunctions.py')
-rw-r--r-- | numpy/lib/tests/test_recfunctions.py | 6 |
1 files changed, 4 insertions, 2 deletions
diff --git a/numpy/lib/tests/test_recfunctions.py b/numpy/lib/tests/test_recfunctions.py index bc9f8d7b6..e1b62d46a 100644 --- a/numpy/lib/tests/test_recfunctions.py +++ b/numpy/lib/tests/test_recfunctions.py @@ -1,11 +1,13 @@ from __future__ import division, absolute_import, print_function +import pytest + import numpy as np import numpy.ma as ma from numpy.ma.mrecords import MaskedRecords from numpy.ma.testutils import assert_equal from numpy.testing import ( - run_module_suite, assert_, assert_raises, dec + run_module_suite, assert_, assert_raises, ) from numpy.lib.recfunctions import ( drop_fields, rename_fields, get_fieldstructure, recursive_fill_fields, @@ -687,7 +689,7 @@ class TestJoinBy(object): b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')]) assert_raises(ValueError, join_by, ['a', 'b', 'b'], a, b) - @dec.knownfailureif(True) + @pytest.mark.xfail(reason="See comment at gh-9343") def test_same_name_different_dtypes_key(self): a_dtype = np.dtype([('key', 'S5'), ('value', '<f4')]) b_dtype = np.dtype([('key', 'S10'), ('value', '<f4')]) |