summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_recfunctions.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2018-03-25 12:34:16 -0600
committerCharles Harris <charlesr.harris@gmail.com>2018-04-04 06:36:36 -0600
commit7e5a41de9fab731e27a761c01302a0a93e2d1070 (patch)
treedbd6265800ad401476bcde904e9bba86f6af2b85 /numpy/lib/tests/test_recfunctions.py
parent359e53ef8e479eefac0e184d4d25af50c2779ce0 (diff)
downloadnumpy-7e5a41de9fab731e27a761c01302a0a93e2d1070.tar.gz
TST: Switch to using pytest markers
Use standard pytest markers everywhere in the numpy tests. At this point there should be no nose dependency. However, nose is required to test the legacy decorators if so desired. At this point, numpy test cannot be run in the way with runtests, rather installed numpy can be tested with `pytest --pyargs numpy` as long as that is not run from the repo. Run it from the tools directory or some such.
Diffstat (limited to 'numpy/lib/tests/test_recfunctions.py')
-rw-r--r--numpy/lib/tests/test_recfunctions.py6
1 files changed, 4 insertions, 2 deletions
diff --git a/numpy/lib/tests/test_recfunctions.py b/numpy/lib/tests/test_recfunctions.py
index bc9f8d7b6..e1b62d46a 100644
--- a/numpy/lib/tests/test_recfunctions.py
+++ b/numpy/lib/tests/test_recfunctions.py
@@ -1,11 +1,13 @@
from __future__ import division, absolute_import, print_function
+import pytest
+
import numpy as np
import numpy.ma as ma
from numpy.ma.mrecords import MaskedRecords
from numpy.ma.testutils import assert_equal
from numpy.testing import (
- run_module_suite, assert_, assert_raises, dec
+ run_module_suite, assert_, assert_raises,
)
from numpy.lib.recfunctions import (
drop_fields, rename_fields, get_fieldstructure, recursive_fill_fields,
@@ -687,7 +689,7 @@ class TestJoinBy(object):
b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')])
assert_raises(ValueError, join_by, ['a', 'b', 'b'], a, b)
- @dec.knownfailureif(True)
+ @pytest.mark.xfail(reason="See comment at gh-9343")
def test_same_name_different_dtypes_key(self):
a_dtype = np.dtype([('key', 'S5'), ('value', '<f4')])
b_dtype = np.dtype([('key', 'S10'), ('value', '<f4')])