summaryrefslogtreecommitdiff
path: root/numpy/lib
diff options
context:
space:
mode:
authorJarrod Millman <millman@berkeley.edu>2009-11-13 17:49:06 +0000
committerJarrod Millman <millman@berkeley.edu>2009-11-13 17:49:06 +0000
commitf07c79d3709a7f81219abc3c516fd772f469c167 (patch)
treeeaff2baba0176a7c41e749fd61b88a421dcfb188 /numpy/lib
parent3122ee546fc0617e195aeb288abe65b9ae95d983 (diff)
downloadnumpy-f07c79d3709a7f81219abc3c516fd772f469c167.tar.gz
first set of checkins from the doc editor
Diffstat (limited to 'numpy/lib')
-rw-r--r--numpy/lib/_datasource.py3
-rw-r--r--numpy/lib/_iotools.py34
-rw-r--r--numpy/lib/scimath.py107
-rw-r--r--numpy/lib/utils.py9
4 files changed, 86 insertions, 67 deletions
diff --git a/numpy/lib/_datasource.py b/numpy/lib/_datasource.py
index 4bfbf0ac4..957e7cb18 100644
--- a/numpy/lib/_datasource.py
+++ b/numpy/lib/_datasource.py
@@ -176,12 +176,11 @@ class DataSource (object):
Examples
--------
-
::
>>> ds = DataSource('/home/guido')
>>> urlname = 'http://www.google.com/index.html'
- >>> gfile = ds.open('http://www.google.com/index.html') # open remote file
+ >>> gfile = ds.open('http://www.google.com/index.html') # remote file
>>> ds.abspath(urlname)
'/home/guido/www.google.com/site/index.html'
diff --git a/numpy/lib/_iotools.py b/numpy/lib/_iotools.py
index c69bd84dc..2c062f1b0 100644
--- a/numpy/lib/_iotools.py
+++ b/numpy/lib/_iotools.py
@@ -391,12 +391,29 @@ def str2bool(value):
class ConverterError(Exception):
+ """
+ Exception raised when an error occurs in a converter for string values.
+
+ """
pass
class ConverterLockError(ConverterError):
+ """
+ Exception raised when an attempt is made to upgrade a locked converter.
+
+ """
pass
class ConversionWarning(UserWarning):
+ """
+ Warning issued when a string converter has a problem.
+
+ Notes
+ -----
+ In `genfromtxt` a `ConversionWarning` is issued if raising exceptions
+ is explicitly suppressed with the "invalid_raise" keyword.
+
+ """
pass
@@ -708,22 +725,23 @@ def easy_dtype(ndtype, names=None, defaultfmt="f%i", **validationargs):
"""
Convenience function to create a `np.dtype` object.
- The function processes the input dtype and matches it with the given names.
+ The function processes the input `dtype` and matches it with the given
+ names.
Parameters
----------
ndtype : var
- Definition of the dtype. Can be any string or dictionary recognized
- by the `np.dtype` function or a sequence of types.
+ Definition of the dtype. Can be any string or dictionary
+ recognized by the `np.dtype` function, or a sequence of types.
names : str or sequence, optional
Sequence of strings to use as field names for a structured dtype.
For convenience, `names` can be a string of a comma-separated list of
- names
+ names.
defaultfmt : str, optional
- Format string used to define missing names, such as "f%i" (default),
- "fields_%02i"...
+ Format string used to define missing names, such as ``"f%i"``
+ (default) or ``"fields_%02i"``.
validationargs : optional
- A series of optional arguments used to initialize a NameValidator.
+ A series of optional arguments used to initialize a `NameValidator`.
Examples
--------
@@ -733,10 +751,12 @@ def easy_dtype(ndtype, names=None, defaultfmt="f%i", **validationargs):
dtype([('f0', '<i4'), ('f1', '<f8')])
>>> np.lib._iotools.easy_dtype("i4, f8", defaultfmt="field_%03i")
dtype([('field_000', '<i4'), ('field_001', '<f8')])
+
>>> np.lib._iotools.easy_dtype((int, float, float), names="a,b,c")
dtype([('a', '<i8'), ('b', '<f8'), ('c', '<f8')])
>>> np.lib._iotools.easy_dtype(float, names="a,b,c")
dtype([('a', '<f8'), ('b', '<f8'), ('c', '<f8')])
+
"""
try:
ndtype = np.dtype(ndtype)
diff --git a/numpy/lib/scimath.py b/numpy/lib/scimath.py
index a3fe1def7..57cf92aaa 100644
--- a/numpy/lib/scimath.py
+++ b/numpy/lib/scimath.py
@@ -167,48 +167,39 @@ def _fix_real_abs_gt_1(x):
def sqrt(x):
"""
- Return the square root of x.
+ Compute the square root of x.
+
+ For negative input elements, a complex value is returned
+ (unlike `numpy.sqrt` which returns NaN).
Parameters
----------
x : array_like
+ The input value(s).
Returns
-------
- out : array_like
-
- Notes
- -----
-
- As the numpy.sqrt, this returns the principal square root of x, which is
- what most people mean when they use square root; the principal square root
- of x is not any number z such as z^2 = x.
-
- For positive numbers, the principal square root is defined as the positive
- number z such as z^2 = x.
+ out : ndarray or scalar
+ The square root of `x`. If `x` was a scalar, so is `out`,
+ otherwise an array is returned.
- The principal square root of -1 is i, the principal square root of any
- negative number -x is defined a i * sqrt(x). For any non zero complex
- number, it is defined by using the following branch cut: x = r e^(i t) with
- r > 0 and -pi < t <= pi. The principal square root is then
- sqrt(r) e^(i t/2).
+ See Also
+ --------
+ numpy.sqrt
Examples
--------
-
- For real, non-negative inputs this works just like numpy.sqrt():
+ For real, non-negative inputs this works just like `numpy.sqrt`:
>>> np.lib.scimath.sqrt(1)
1.0
-
- >>> np.lib.scimath.sqrt([1,4])
+ >>> np.lib.scimath.sqrt([1, 4])
array([ 1., 2.])
But it automatically handles negative inputs:
>>> np.lib.scimath.sqrt(-1)
(0.0+1.0j)
-
>>> np.lib.scimath.sqrt([-1,4])
array([ 0.+1.j, 2.+0.j])
@@ -227,14 +218,14 @@ def log(x):
Parameters
----------
- x : array_like or scalar
+ x : array_like
The value(s) whose log is (are) required.
Returns
-------
out : ndarray or scalar
The log of the `x` value(s). If `x` was a scalar, so is `out`,
- otherwise an array object is returned.
+ otherwise an array is returned.
See Also
--------
@@ -252,8 +243,8 @@ def log(x):
>>> np.emath.log(np.exp(1))
1.0
- Negative arguments are handled "correctly" (recall that `exp(log(x)) == x`
- does *not* hold for real `x < 0`):
+ Negative arguments are handled "correctly" (recall that
+ ``exp(log(x)) == x`` does *not* hold for real ``x < 0``):
>>> np.emath.log(-np.exp(1)) == (1 + np.pi * 1j)
True
@@ -314,28 +305,29 @@ def logn(n, x):
"""
Take log base n of x.
- If x contains negative inputs, the answer is computed and returned in the
+ If `x` contains negative inputs, the answer is computed and returned in the
complex domain.
Parameters
----------
+ n : int
+ The base in which the log is taken.
x : array_like
+ The value(s) whose log base `n` is (are) required.
Returns
-------
- out : array_like
+ out : ndarray or scalar
+ The log base `n` of the `x` value(s). If `x` was a scalar, so is
+ `out`, otherwise an array is returned.
Examples
--------
-
- (We set the printing precision so the example can be auto-tested)
-
>>> np.set_printoptions(precision=4)
- >>> np.lib.scimath.logn(2,[4,8])
+ >>> np.lib.scimath.logn(2, [4, 8])
array([ 2., 3.])
-
- >>> np.lib.scimath.logn(2,[-4,-8,8])
+ >>> np.lib.scimath.logn(2, [-4, -8, 8])
array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ])
"""
@@ -354,14 +346,14 @@ def log2(x):
Parameters
----------
- x : array_like or scalar
+ x : array_like
The value(s) whose log base 2 is (are) required.
Returns
-------
out : ndarray or scalar
The log base 2 of the `x` value(s). If `x` was a scalar, so is `out`,
- otherwise an array object is returned.
+ otherwise an array is returned.
See Also
--------
@@ -376,14 +368,12 @@ def log2(x):
Examples
--------
-
- (We set the printing precision so the example can be auto-tested)
+ We set the printing precision so the example can be auto-tested:
>>> np.set_printoptions(precision=4)
>>> np.emath.log2(8)
3.0
-
>>> np.emath.log2([-4, -8, 8])
array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ])
@@ -393,34 +383,40 @@ def log2(x):
def power(x, p):
"""
- Return x**p.
-
- If x contains negative values, it is converted to the complex domain.
+ Return x to the power p, (x**p).
- If p contains negative values, it is converted to floating point.
+ If `x` contains negative values, the output is converted to the
+ complex domain.
Parameters
----------
x : array_like
- p : array_like of integers
+ The input value(s).
+ p : array_like of ints
+ The power(s) to which `x` is raised. If `x` contains multiple values,
+ `p` has to either be a scalar, or contain the same number of values
+ as `x`. In the latter case, the result is
+ ``x[0]**p[0], x[1]**p[1], ...``.
Returns
-------
- out : array_like
+ out : ndarray or scalar
+ The result of ``x**p``. If `x` and `p` are scalars, so is `out`,
+ otherwise an array is returned.
- Examples
+ See Also
--------
- (We set the printing precision so the example can be auto-tested)
+ numpy.power
+ Examples
+ --------
>>> np.set_printoptions(precision=4)
- >>> np.lib.scimath.power([2,4],2)
+ >>> np.lib.scimath.power([2, 4], 2)
array([ 4, 16])
-
- >>> np.lib.scimath.power([2,4],-2)
+ >>> np.lib.scimath.power([2, 4], -2)
array([ 0.25 , 0.0625])
-
- >>> np.lib.scimath.power([-2,4],2)
+ >>> np.lib.scimath.power([-2, 4], 2)
array([ 4.+0.j, 16.+0.j])
"""
@@ -527,14 +523,14 @@ def arctanh(x):
Parameters
----------
- x : array_like or scalar
+ x : array_like
The value(s) whose arctanh is (are) required.
Returns
-------
out : ndarray or scalar
The inverse hyperbolic tangent(s) of the `x` value(s). If `x` was
- a scalar so is `out`, otherwise an array object is returned.
+ a scalar so is `out`, otherwise an array is returned.
See Also
@@ -551,10 +547,9 @@ def arctanh(x):
--------
>>> np.set_printoptions(precision=4)
- >>> np.emath.arctanh(np.matrix(np.eye(2))) # Note: an array is returned
+ >>> np.emath.arctanh(np.matrix(np.eye(2)))
array([[ Inf, 0.],
[ 0., Inf]])
-
>>> np.emath.arctanh([1j])
array([ 0.+0.7854j])
diff --git a/numpy/lib/utils.py b/numpy/lib/utils.py
index e030abf4f..43d6ede1f 100644
--- a/numpy/lib/utils.py
+++ b/numpy/lib/utils.py
@@ -96,9 +96,14 @@ else:
return func
class _Deprecate(object):
- """Decorator class to deprecate old functions.
+ """
+ Decorator class to deprecate old functions.
+
+ Refer to `deprecate` for details.
- Refer to ``decorate``.
+ See Also
+ --------
+ deprecate
"""
def __init__(self, old_name=None, new_name=None, message=None):