diff options
author | Thomas A Caswell <tcaswell@gmail.com> | 2014-12-09 17:55:29 -0500 |
---|---|---|
committer | Thomas A Caswell <tcaswell@bnl.gov> | 2014-12-12 14:00:39 -0500 |
commit | 48b61ec8c4b6e81100d96b3ab854947dd6ab1f64 (patch) | |
tree | 095045f5cdea1db0fea8af2a07c161d1b368db2c /numpy/lib | |
parent | 994a877d459e4ae9795dc0e35ebb9faef575ad13 (diff) | |
download | numpy-48b61ec8c4b6e81100d96b3ab854947dd6ab1f64.tar.gz |
DOC : move shape to front to match rest of docs
Diffstat (limited to 'numpy/lib')
-rw-r--r-- | numpy/lib/function_base.py | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index 7bab66313..135053e43 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -263,7 +263,7 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None): normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density ``bin_count / sample_count / bin_volume``. - weights : array_like (N,), optional + weights : (N,) array_like, optional An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. Weights are normalized to 1 if normed is True. If normed is False, the values of the returned histogram are equal to the sum of the @@ -885,9 +885,9 @@ def copy(a, order='K'): def gradient(f, *varargs, **kwargs): """ Return the gradient of an N-dimensional array. - + The gradient is computed using second order accurate central differences - in the interior and either first differences or second order accurate + in the interior and either first differences or second order accurate one-sides (forward or backwards) differences at the boundaries. The returned gradient hence has the same shape as the input array. @@ -901,7 +901,7 @@ def gradient(f, *varargs, **kwargs): edge_order : {1, 2}, optional Gradient is calculated using N\ :sup:`th` order accurate differences at the boundaries. Default: 1. - + .. versionadded:: 1.9.1 Returns |