summaryrefslogtreecommitdiff
path: root/numpy/lib
diff options
context:
space:
mode:
authorThomas A Caswell <tcaswell@gmail.com>2014-12-09 17:55:29 -0500
committerThomas A Caswell <tcaswell@bnl.gov>2014-12-12 14:00:39 -0500
commit48b61ec8c4b6e81100d96b3ab854947dd6ab1f64 (patch)
tree095045f5cdea1db0fea8af2a07c161d1b368db2c /numpy/lib
parent994a877d459e4ae9795dc0e35ebb9faef575ad13 (diff)
downloadnumpy-48b61ec8c4b6e81100d96b3ab854947dd6ab1f64.tar.gz
DOC : move shape to front to match rest of docs
Diffstat (limited to 'numpy/lib')
-rw-r--r--numpy/lib/function_base.py8
1 files changed, 4 insertions, 4 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 7bab66313..135053e43 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -263,7 +263,7 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None):
normed : bool, optional
If False, returns the number of samples in each bin. If True,
returns the bin density ``bin_count / sample_count / bin_volume``.
- weights : array_like (N,), optional
+ weights : (N,) array_like, optional
An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`.
Weights are normalized to 1 if normed is True. If normed is False,
the values of the returned histogram are equal to the sum of the
@@ -885,9 +885,9 @@ def copy(a, order='K'):
def gradient(f, *varargs, **kwargs):
"""
Return the gradient of an N-dimensional array.
-
+
The gradient is computed using second order accurate central differences
- in the interior and either first differences or second order accurate
+ in the interior and either first differences or second order accurate
one-sides (forward or backwards) differences at the boundaries. The
returned gradient hence has the same shape as the input array.
@@ -901,7 +901,7 @@ def gradient(f, *varargs, **kwargs):
edge_order : {1, 2}, optional
Gradient is calculated using N\ :sup:`th` order accurate differences
at the boundaries. Default: 1.
-
+
.. versionadded:: 1.9.1
Returns