diff options
author | Travis Oliphant <oliphant@enthought.com> | 2006-06-27 11:27:42 +0000 |
---|---|---|
committer | Travis Oliphant <oliphant@enthought.com> | 2006-06-27 11:27:42 +0000 |
commit | 8290d01cba2320c7b1f9367f73356596d279c2da (patch) | |
tree | c29a8e2a1c86eb4ed74035cd5ca68ecc89fa4615 /numpy/linalg/linalg.py | |
parent | 3263664f0dab43f4fe75017027d4fd74a30f89be (diff) | |
download | numpy-8290d01cba2320c7b1f9367f73356596d279c2da.tar.gz |
Add some documentation to linalg.py
Diffstat (limited to 'numpy/linalg/linalg.py')
-rw-r--r-- | numpy/linalg/linalg.py | 27 |
1 files changed, 27 insertions, 0 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py index 4e787b26c..7a3821675 100644 --- a/numpy/linalg/linalg.py +++ b/numpy/linalg/linalg.py @@ -80,6 +80,8 @@ def _assertSquareness(*arrays): # Linear equations def solve(a, b): + """Return the solution of a*x = b + """ one_eq = len(b.shape) == 1 if one_eq: b = b[:, newaxis] @@ -281,6 +283,8 @@ eigenvalue u[i]. Satisfies the equation dot(a, v[:,i]) = u[i]*v[:,i] def eigh(a, UPLO='L'): + """Compute eigenvalues for a Hermitian-symmetric matrix. + """ a, wrap = _makearray(a) _assertRank2(a) _assertSquareness(a) @@ -320,6 +324,22 @@ def eigh(a, UPLO='L'): # Singular value decomposition def svd(a, full_matrices=1, compute_uv=1): + """Singular Value Decomposition. + + u,s,vh = svd(a) + + If a is an M x N array, then the svd produces a factoring of the array + into two unitary (orthogonal) 2-d arrays u (MxM) and vh (NxN) and a + min(M,N)-length array of singular values such that + + a == dot(u,dot(S,vh)) + + where S is an MxN array of zeros whose main diagonal is s. + + if compute_uv == 0, then return only the singular values + if full_matrices == 0, then only part of either u or vh is + returned so that it is MxN + """ a, wrap = _makearray(a) _assertRank2(a) m, n = a.shape @@ -387,6 +407,12 @@ def svd(a, full_matrices=1, compute_uv=1): # Generalized inverse def pinv(a, rcond = 1.e-10): + """Return the (Moore-Penrose) pseudo-inverse of a 2-d array + + This method computes the generalized inverse using the + singular-value decomposition and all singular values larger than + rcond of the largest. + """ a, wrap = _makearray(a) if a.dtype.char in typecodes['Complex']: a = conjugate(a) @@ -405,6 +431,7 @@ def pinv(a, rcond = 1.e-10): # Determinant def det(a): + "The determinant of the 2-d array a" a = asarray(a) _assertRank2(a) _assertSquareness(a) |