diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2013-08-18 11:51:25 -0600 |
---|---|---|
committer | Charles Harris <charlesr.harris@gmail.com> | 2013-08-18 11:51:25 -0600 |
commit | fbd6510d58a47ea0d166c48a82793f05425406e4 (patch) | |
tree | 330ce703eb02d20f96099c3fe0fc36ae33d4905b /numpy/linalg/tests/test_linalg.py | |
parent | 8ddb0ce0acafe75d78df528b4d2540dfbf4b364d (diff) | |
download | numpy-fbd6510d58a47ea0d166c48a82793f05425406e4.tar.gz |
STY: Giant comma spacing fixup.
Run the 2to3 ws_comma fixer on *.py files. Some lines are now too long
and will need to be broken at some point. OTOH, some lines were already
too long and need to be broken at some point. Now seems as good a time
as any to do this with open PRs at a minimum.
Diffstat (limited to 'numpy/linalg/tests/test_linalg.py')
-rw-r--r-- | numpy/linalg/tests/test_linalg.py | 128 |
1 files changed, 64 insertions, 64 deletions
diff --git a/numpy/linalg/tests/test_linalg.py b/numpy/linalg/tests/test_linalg.py index 7f102634e..2dd270521 100644 --- a/numpy/linalg/tests/test_linalg.py +++ b/numpy/linalg/tests/test_linalg.py @@ -39,32 +39,32 @@ def get_complex_dtype(dtype): class LinalgTestCase(object): def test_single(self): - a = array([[1.,2.], [3.,4.]], dtype=single) + a = array([[1., 2.], [3., 4.]], dtype=single) b = array([2., 1.], dtype=single) self.do(a, b) def test_double(self): - a = array([[1.,2.], [3.,4.]], dtype=double) + a = array([[1., 2.], [3., 4.]], dtype=double) b = array([2., 1.], dtype=double) self.do(a, b) def test_double_2(self): - a = array([[1.,2.], [3.,4.]], dtype=double) + a = array([[1., 2.], [3., 4.]], dtype=double) b = array([[2., 1., 4.], [3., 4., 6.]], dtype=double) self.do(a, b) def test_csingle(self): - a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=csingle) + a = array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=csingle) b = array([2.+1j, 1.+2j], dtype=csingle) self.do(a, b) def test_cdouble(self): - a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=cdouble) + a = array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=cdouble) b = array([2.+1j, 1.+2j], dtype=cdouble) self.do(a, b) def test_cdouble_2(self): - a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=cdouble) + a = array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=cdouble) b = array([[2.+1j, 1.+2j, 1+3j], [1-2j, 1-3j, 1-6j]], dtype=cdouble) self.do(a, b) @@ -78,71 +78,71 @@ class LinalgTestCase(object): pass def test_nonarray(self): - a = [[1,2], [3,4]] + a = [[1, 2], [3, 4]] b = [2, 1] - self.do(a,b) + self.do(a, b) def test_matrix_b_only(self): """Check that matrix type is preserved.""" - a = array([[1.,2.], [3.,4.]]) + a = array([[1., 2.], [3., 4.]]) b = matrix([2., 1.]).T self.do(a, b) def test_matrix_a_and_b(self): """Check that matrix type is preserved.""" - a = matrix([[1.,2.], [3.,4.]]) + a = matrix([[1., 2.], [3., 4.]]) b = matrix([2., 1.]).T self.do(a, b) class LinalgNonsquareTestCase(object): def test_single_nsq_1(self): - a = array([[1.,2.,3.], [3.,4.,6.]], dtype=single) + a = array([[1., 2., 3.], [3., 4., 6.]], dtype=single) b = array([2., 1.], dtype=single) self.do(a, b) def test_single_nsq_2(self): - a = array([[1.,2.], [3.,4.], [5.,6.]], dtype=single) + a = array([[1., 2.], [3., 4.], [5., 6.]], dtype=single) b = array([2., 1., 3.], dtype=single) self.do(a, b) def test_double_nsq_1(self): - a = array([[1.,2.,3.], [3.,4.,6.]], dtype=double) + a = array([[1., 2., 3.], [3., 4., 6.]], dtype=double) b = array([2., 1.], dtype=double) self.do(a, b) def test_double_nsq_2(self): - a = array([[1.,2.], [3.,4.], [5.,6.]], dtype=double) + a = array([[1., 2.], [3., 4.], [5., 6.]], dtype=double) b = array([2., 1., 3.], dtype=double) self.do(a, b) def test_csingle_nsq_1(self): - a = array([[1.+1j,2.+2j,3.-3j], [3.-5j,4.+9j,6.+2j]], dtype=csingle) + a = array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=csingle) b = array([2.+1j, 1.+2j], dtype=csingle) self.do(a, b) def test_csingle_nsq_2(self): - a = array([[1.+1j,2.+2j], [3.-3j,4.-9j], [5.-4j,6.+8j]], dtype=csingle) + a = array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=csingle) b = array([2.+1j, 1.+2j, 3.-3j], dtype=csingle) self.do(a, b) def test_cdouble_nsq_1(self): - a = array([[1.+1j,2.+2j,3.-3j], [3.-5j,4.+9j,6.+2j]], dtype=cdouble) + a = array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=cdouble) b = array([2.+1j, 1.+2j], dtype=cdouble) self.do(a, b) def test_cdouble_nsq_2(self): - a = array([[1.+1j,2.+2j], [3.-3j,4.-9j], [5.-4j,6.+8j]], dtype=cdouble) + a = array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=cdouble) b = array([2.+1j, 1.+2j, 3.-3j], dtype=cdouble) self.do(a, b) def test_cdouble_nsq_1_2(self): - a = array([[1.+1j,2.+2j,3.-3j], [3.-5j,4.+9j,6.+2j]], dtype=cdouble) + a = array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=cdouble) b = array([[2.+1j, 1.+2j], [1-1j, 2-2j]], dtype=cdouble) self.do(a, b) def test_cdouble_nsq_2_2(self): - a = array([[1.+1j,2.+2j], [3.-3j,4.-9j], [5.-4j,6.+8j]], dtype=cdouble) + a = array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=cdouble) b = array([[2.+1j, 1.+2j], [1-1j, 2-2j], [1-1j, 2-2j]], dtype=cdouble) self.do(a, b) @@ -211,14 +211,14 @@ class TestSolve(LinalgTestCase, LinalgGeneralizedTestCase, TestCase): a = np.arange(8).reshape(2, 2, 2) b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass) - expected = linalg.solve(a, b)[:,0:0,:] - result = linalg.solve(a[:,0:0,0:0], b[:,0:0,:]) + expected = linalg.solve(a, b)[:, 0:0,:] + result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0,:]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) # Test errors for non-square and only b's dimension being 0 - assert_raises(linalg.LinAlgError, linalg.solve, a[:,0:0,0:1], b) - assert_raises(ValueError, linalg.solve, a, b[:,0:0,:]) + assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b) + assert_raises(ValueError, linalg.solve, a, b[:, 0:0,:]) # Test broadcasting error b = np.arange(6).reshape(1, 3, 2) # broadcasting error @@ -227,15 +227,15 @@ class TestSolve(LinalgTestCase, LinalgGeneralizedTestCase, TestCase): # Test zero "single equations" with 0x0 matrices. b = np.arange(2).reshape(1, 2).view(ArraySubclass) - expected = linalg.solve(a, b)[:,0:0] - result = linalg.solve(a[:,0:0,0:0], b[:,0:0]) + expected = linalg.solve(a, b)[:, 0:0] + result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) b = np.arange(3).reshape(1, 3) assert_raises(ValueError, linalg.solve, a, b) assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) - assert_raises(ValueError, linalg.solve, a[:,0:0,0:0], b) + assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b) class TestInv(LinalgTestCase, LinalgGeneralizedTestCase, TestCase): @@ -256,13 +256,13 @@ class TestInv(LinalgTestCase, LinalgGeneralizedTestCase, TestCase): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass - a = np.zeros((0,1,1), dtype=np.int_).view(ArraySubclass) + a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.inv(a) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res.shape) assert_(isinstance(a, ArraySubclass)) - a = np.zeros((0,0), dtype=np.complex64).view(ArraySubclass) + a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.inv(a) assert_(res.dtype.type is np.complex64) assert_equal(a.shape, res.shape) @@ -288,7 +288,7 @@ class TestEig(LinalgTestCase, LinalgGeneralizedTestCase, TestCase): def do(self, a, b): evalues, evectors = linalg.eig(a) if evectors.ndim == 3: - assert_almost_equal(dot_generalized(a, evectors), evectors * evalues[:,None,:]) + assert_almost_equal(dot_generalized(a, evectors), evectors * evalues[:, None,:]) else: assert_almost_equal(dot(a, evectors), multiply(evectors, evalues)) assert_(imply(isinstance(a, matrix), isinstance(evectors, matrix))) @@ -313,7 +313,7 @@ class TestSVD(LinalgTestCase, LinalgGeneralizedTestCase, TestCase): def do(self, a, b): u, s, vt = linalg.svd(a, 0) if u.ndim == 3: - assert_almost_equal(a, dot_generalized(u * s[:,None,:], vt)) + assert_almost_equal(a, dot_generalized(u * s[:, None,:], vt)) else: assert_almost_equal(a, dot(multiply(u, s), vt)) assert_(imply(isinstance(a, matrix), isinstance(u, matrix))) @@ -344,13 +344,13 @@ class TestCond2(LinalgTestCase, TestCase): def do(self, a, b): c = asarray(a) # a might be a matrix s = linalg.svd(c, compute_uv=False) - old_assert_almost_equal(s[0]/s[-1], linalg.cond(a,2), decimal=5) + old_assert_almost_equal(s[0]/s[-1], linalg.cond(a, 2), decimal=5) class TestCondInf(TestCase): def test(self): - A = array([[1.,0,0],[0,-2.,0],[0,0,3.]]) - assert_almost_equal(linalg.cond(A,inf),3.) + A = array([[1., 0, 0], [0, -2., 0], [0, 0, 3.]]) + assert_almost_equal(linalg.cond(A, inf), 3.) class TestPinv(LinalgTestCase, TestCase): @@ -426,10 +426,10 @@ class TestLstsq(LinalgTestCase, LinalgNonsquareTestCase, TestCase): class TestMatrixPower(object): - R90 = array([[0,1],[-1,0]]) - Arb22 = array([[4,-7],[-2,10]]) - noninv = array([[1,0],[0,0]]) - arbfloat = array([[0.1,3.2],[1.2,0.7]]) + R90 = array([[0, 1], [-1, 0]]) + Arb22 = array([[4, -7], [-2, 10]]) + noninv = array([[1, 0], [0, 0]]) + arbfloat = array([[0.1, 3.2], [1.2, 0.7]]) large = identity(10) t = large[1,:].copy() @@ -437,14 +437,14 @@ class TestMatrixPower(object): large[0,:] = t def test_large_power(self): - assert_equal(matrix_power(self.R90,2**100+2**10+2**5+1),self.R90) + assert_equal(matrix_power(self.R90, 2**100+2**10+2**5+1), self.R90) def test_large_power_trailing_zero(self): - assert_equal(matrix_power(self.R90,2**100+2**10+2**5),identity(2)) + assert_equal(matrix_power(self.R90, 2**100+2**10+2**5), identity(2)) def testip_zero(self): def tz(M): - mz = matrix_power(M,0) + mz = matrix_power(M, 0) assert_equal(mz, identity(M.shape[0])) assert_equal(mz.dtype, M.dtype) for M in [self.Arb22, self.arbfloat, self.large]: @@ -452,7 +452,7 @@ class TestMatrixPower(object): def testip_one(self): def tz(M): - mz = matrix_power(M,1) + mz = matrix_power(M, 1) assert_equal(mz, M) assert_equal(mz.dtype, M.dtype) for M in [self.Arb22, self.arbfloat, self.large]: @@ -460,46 +460,46 @@ class TestMatrixPower(object): def testip_two(self): def tz(M): - mz = matrix_power(M,2) - assert_equal(mz, dot(M,M)) + mz = matrix_power(M, 2) + assert_equal(mz, dot(M, M)) assert_equal(mz.dtype, M.dtype) for M in [self.Arb22, self.arbfloat, self.large]: yield tz, M def testip_invert(self): def tz(M): - mz = matrix_power(M,-1) - assert_almost_equal(identity(M.shape[0]), dot(mz,M)) + mz = matrix_power(M, -1) + assert_almost_equal(identity(M.shape[0]), dot(mz, M)) for M in [self.R90, self.Arb22, self.arbfloat, self.large]: yield tz, M def test_invert_noninvertible(self): import numpy.linalg assert_raises(numpy.linalg.linalg.LinAlgError, - lambda: matrix_power(self.noninv,-1)) + lambda: matrix_power(self.noninv, -1)) class TestBoolPower(TestCase): def test_square(self): - A = array([[True,False],[True,True]]) - assert_equal(matrix_power(A,2),A) + A = array([[True, False], [True, True]]) + assert_equal(matrix_power(A, 2), A) class HermitianTestCase(object): def test_single(self): - a = array([[1.,2.], [2.,1.]], dtype=single) + a = array([[1., 2.], [2., 1.]], dtype=single) self.do(a, None) def test_double(self): - a = array([[1.,2.], [2.,1.]], dtype=double) + a = array([[1., 2.], [2., 1.]], dtype=double) self.do(a, None) def test_csingle(self): - a = array([[1.,2+3j], [2-3j,1]], dtype=csingle) + a = array([[1., 2+3j], [2-3j, 1]], dtype=csingle) self.do(a, None) def test_cdouble(self): - a = array([[1.,2+3j], [2-3j,1]], dtype=cdouble) + a = array([[1., 2+3j], [2-3j, 1]], dtype=cdouble) self.do(a, None) def test_empty(self): @@ -507,17 +507,17 @@ class HermitianTestCase(object): assert_raises(linalg.LinAlgError, self.do, a, None) def test_nonarray(self): - a = [[1,2], [2,1]] + a = [[1, 2], [2, 1]] self.do(a, None) def test_matrix_b_only(self): """Check that matrix type is preserved.""" - a = array([[1.,2.], [2.,1.]]) + a = array([[1., 2.], [2., 1.]]) self.do(a, None) def test_matrix_a_and_b(self): """Check that matrix type is preserved.""" - a = matrix([[1.,2.], [2.,1.]]) + a = matrix([[1., 2.], [2., 1.]]) self.do(a, None) @@ -623,7 +623,7 @@ class _TestNorm(TestCase): # or column separately. A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt) for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]: - expected0 = [norm(A[:,k], ord=order) for k in range(A.shape[1])] + expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])] assert_almost_equal(norm(A, ord=order, axis=0), expected0) expected1 = [norm(A[k,:], ord=order) for k in range(A.shape[0])] assert_almost_equal(norm(A, ord=order, axis=1), expected1) @@ -644,11 +644,11 @@ class _TestNorm(TestCase): assert_almost_equal(n, expected) n = norm(B, ord=order, axis=(0, 2)) - expected = [norm(B[:,k,:], ord=order) for k in range(B.shape[1])] + expected = [norm(B[:, k,:], ord=order) for k in range(B.shape[1])] assert_almost_equal(n, expected) n = norm(B, ord=order, axis=(0, 1)) - expected = [norm(B[:,:,k], ord=order) for k in range(B.shape[2])] + expected = [norm(B[:,:, k], ord=order) for k in range(B.shape[2])] assert_almost_equal(n, expected) def test_bad_args(self): @@ -696,17 +696,17 @@ class TestMatrixRank(object): # Full rank matrix yield assert_equal, 4, matrix_rank(np.eye(4)) # rank deficient matrix - I=np.eye(4); I[-1,-1] = 0. + I=np.eye(4); I[-1, -1] = 0. yield assert_equal, matrix_rank(I), 3 # All zeros - zero rank - yield assert_equal, matrix_rank(np.zeros((4,4))), 0 + yield assert_equal, matrix_rank(np.zeros((4, 4))), 0 # 1 dimension - rank 1 unless all 0 yield assert_equal, matrix_rank([1, 0, 0, 0]), 1 yield assert_equal, matrix_rank(np.zeros((4,))), 0 # accepts array-like yield assert_equal, matrix_rank([1]), 1 # greater than 2 dimensions raises error - yield assert_raises, TypeError, matrix_rank, np.zeros((2,2,2)) + yield assert_raises, TypeError, matrix_rank, np.zeros((2, 2, 2)) # works on scalar yield assert_equal, matrix_rank(1), 1 @@ -769,7 +769,7 @@ class TestQR(TestCase): def test_qr_empty(self): - a = np.zeros((0,2)) + a = np.zeros((0, 2)) self.assertRaises(linalg.LinAlgError, linalg.qr, a) @@ -864,7 +864,7 @@ def test_generalized_raise_multiloop(): x = np.zeros([4, 4, 2, 2])[1::2] x[...] = invertible - x[0,0] = non_invertible + x[0, 0] = non_invertible assert_raises(np.linalg.LinAlgError, np.linalg.inv, x) |