summaryrefslogtreecommitdiff
path: root/numpy/linalg/tests
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2013-08-18 11:51:25 -0600
committerCharles Harris <charlesr.harris@gmail.com>2013-08-18 11:51:25 -0600
commitfbd6510d58a47ea0d166c48a82793f05425406e4 (patch)
tree330ce703eb02d20f96099c3fe0fc36ae33d4905b /numpy/linalg/tests
parent8ddb0ce0acafe75d78df528b4d2540dfbf4b364d (diff)
downloadnumpy-fbd6510d58a47ea0d166c48a82793f05425406e4.tar.gz
STY: Giant comma spacing fixup.
Run the 2to3 ws_comma fixer on *.py files. Some lines are now too long and will need to be broken at some point. OTOH, some lines were already too long and need to be broken at some point. Now seems as good a time as any to do this with open PRs at a minimum.
Diffstat (limited to 'numpy/linalg/tests')
-rw-r--r--numpy/linalg/tests/test_gufuncs_linalg.py82
-rw-r--r--numpy/linalg/tests/test_linalg.py128
-rw-r--r--numpy/linalg/tests/test_regression.py8
3 files changed, 109 insertions, 109 deletions
diff --git a/numpy/linalg/tests/test_gufuncs_linalg.py b/numpy/linalg/tests/test_gufuncs_linalg.py
index c930ecff8..40f8c4058 100644
--- a/numpy/linalg/tests/test_gufuncs_linalg.py
+++ b/numpy/linalg/tests/test_gufuncs_linalg.py
@@ -71,7 +71,7 @@ def assert_almost_equal(a, b, **kw):
def assert_valid_eigen_no_broadcast(M, w, v, **kw):
- lhs = gula.matrix_multiply(M,v)
+ lhs = gula.matrix_multiply(M, v)
rhs = w*v
assert_almost_equal(lhs, rhs, **kw)
@@ -127,38 +127,38 @@ def assert_valid_eigenvals(M, w, **kw):
class MatrixGenerator(object):
def real_matrices(self):
- a = [[1,2],
- [3,4]]
+ a = [[1, 2],
+ [3, 4]]
- b = [[4,3],
- [2,1]]
+ b = [[4, 3],
+ [2, 1]]
return a, b
def real_symmetric_matrices(self):
- a = [[ 2 ,-1],
- [-1 , 2]]
+ a = [[ 2, -1],
+ [-1, 2]]
- b = [[4,3],
- [2,1]]
+ b = [[4, 3],
+ [2, 1]]
return a, b
def complex_matrices(self):
- a = [[1+2j,2+3j],
- [3+4j,4+5j]]
+ a = [[1+2j, 2+3j],
+ [3+4j, 4+5j]]
- b = [[4+3j,3+2j],
- [2+1j,1+0j]]
+ b = [[4+3j, 3+2j],
+ [2+1j, 1+0j]]
return a, b
def complex_hermitian_matrices(self):
- a = [[2,-1],
+ a = [[2, -1],
[-1, 2]]
- b = [[4+3j,3+2j],
- [2-1j,1+0j]]
+ b = [[4+3j, 3+2j],
+ [2-1j, 1+0j]]
return a, b
@@ -181,7 +181,7 @@ class MatrixGenerator(object):
class GeneralTestCase(MatrixGenerator):
def test_single(self):
- a,b = self.real_matrices()
+ a, b = self.real_matrices()
self.do(array(a, dtype=single),
array(b, dtype=single))
@@ -201,7 +201,7 @@ class GeneralTestCase(MatrixGenerator):
array(b, dtype=cdouble))
def test_vector_single(self):
- a,b = self.real_matrices_vector()
+ a, b = self.real_matrices_vector()
self.do(array(a, dtype=single),
array(b, dtype=single))
@@ -223,7 +223,7 @@ class GeneralTestCase(MatrixGenerator):
class HermitianTestCase(MatrixGenerator):
def test_single(self):
- a,b = self.real_symmetric_matrices()
+ a, b = self.real_symmetric_matrices()
self.do(array(a, dtype=single),
array(b, dtype=single))
@@ -243,7 +243,7 @@ class HermitianTestCase(MatrixGenerator):
array(b, dtype=cdouble))
def test_vector_single(self):
- a,b = self.real_symmetric_matrices_vector()
+ a, b = self.real_symmetric_matrices_vector()
self.do(array(a, dtype=single),
array(b, dtype=single))
@@ -265,17 +265,17 @@ class HermitianTestCase(MatrixGenerator):
class TestMatrixMultiply(GeneralTestCase):
def do(self, a, b):
- res = gula.matrix_multiply(a,b)
+ res = gula.matrix_multiply(a, b)
if a.ndim == 2:
- assert_almost_equal(res, np.dot(a,b))
+ assert_almost_equal(res, np.dot(a, b))
else:
- assert_almost_equal(res[0], np.dot(a[0],b[0]))
+ assert_almost_equal(res[0], np.dot(a[0], b[0]))
def test_column_matrix(self):
- A = np.arange(2*2).reshape((2,2))
- B = np.arange(2*1).reshape((2,1))
- res = gula.matrix_multiply(A,B)
- assert_almost_equal(res, np.dot(A,B))
+ A = np.arange(2*2).reshape((2, 2))
+ B = np.arange(2*1).reshape((2, 1))
+ res = gula.matrix_multiply(A, B)
+ assert_almost_equal(res, np.dot(A, B))
class TestInv(GeneralTestCase, TestCase):
def do(self, a, b):
@@ -291,7 +291,7 @@ class TestPoinv(HermitianTestCase, TestCase):
a_inv = gula.poinv(a)
ident = identity(a.shape[-1])
if 3 == len(a.shape):
- ident = ident.reshape((1,ident.shape[0], ident.shape[1]))
+ ident = ident.reshape((1, ident.shape[0], ident.shape[1]))
assert_almost_equal(a_inv, gula.inv(a))
assert_almost_equal(gula.matrix_multiply(a, a_inv), ident)
@@ -369,10 +369,10 @@ class TestEigh(HermitianTestCase, TestCase):
assert_almost_equal(ev_up, evalues_up)
-class TestSolve(GeneralTestCase,TestCase):
+class TestSolve(GeneralTestCase, TestCase):
def do(self, a, b):
- x = gula.solve(a,b)
- assert_almost_equal(b, gula.matrix_multiply(a,x))
+ x = gula.solve(a, b)
+ assert_almost_equal(b, gula.matrix_multiply(a, x))
class TestChosolve(HermitianTestCase, TestCase):
@@ -389,8 +389,8 @@ class TestChosolve(HermitianTestCase, TestCase):
assert_almost_equal(x_lo, x_up)
# inner1d not defined for complex types
# todo: implement alternative test
- assert_almost_equal(b, gula.matrix_multiply(a,x_lo))
- assert_almost_equal(b, gula.matrix_multiply(a,x_up))
+ assert_almost_equal(b, gula.matrix_multiply(a, x_lo))
+ assert_almost_equal(b, gula.matrix_multiply(a, x_up))
class TestSVD(GeneralTestCase, TestCase):
@@ -417,7 +417,7 @@ class TestCholesky(HermitianTestCase, TestCase):
# - multiply4_add
class UfuncTestCase(object):
- parameter = range(0,10)
+ parameter = range(0, 10)
def _check_for_type(self, typ):
a = np.array(self.__class__.parameter, dtype=typ)
@@ -455,43 +455,43 @@ class UfuncTestCase(object):
class TestAdd3(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.add3(a,a,a)
+ r = gula.add3(a, a, a)
assert_almost_equal(r, a+a+a)
class TestMultiply3(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.multiply3(a,a,a)
+ r = gula.multiply3(a, a, a)
assert_almost_equal(r, a*a*a)
class TestMultiply3Add(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.multiply3_add(a,a,a,a)
+ r = gula.multiply3_add(a, a, a, a)
assert_almost_equal(r, a*a*a+a)
class TestMultiplyAdd(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.multiply_add(a,a,a)
+ r = gula.multiply_add(a, a, a)
assert_almost_equal(r, a*a+a)
class TestMultiplyAdd2(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.multiply_add2(a,a,a,a)
+ r = gula.multiply_add2(a, a, a, a)
assert_almost_equal(r, a*a+a+a)
class TestMultiply4(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.multiply4(a,a,a,a)
+ r = gula.multiply4(a, a, a, a)
assert_almost_equal(r, a*a*a*a)
class TestMultiply4_add(UfuncTestCase, TestCase):
def do(self, a):
- r = gula.multiply4_add(a,a,a,a,a)
+ r = gula.multiply4_add(a, a, a, a, a)
assert_almost_equal(r, a*a*a*a+a)
diff --git a/numpy/linalg/tests/test_linalg.py b/numpy/linalg/tests/test_linalg.py
index 7f102634e..2dd270521 100644
--- a/numpy/linalg/tests/test_linalg.py
+++ b/numpy/linalg/tests/test_linalg.py
@@ -39,32 +39,32 @@ def get_complex_dtype(dtype):
class LinalgTestCase(object):
def test_single(self):
- a = array([[1.,2.], [3.,4.]], dtype=single)
+ a = array([[1., 2.], [3., 4.]], dtype=single)
b = array([2., 1.], dtype=single)
self.do(a, b)
def test_double(self):
- a = array([[1.,2.], [3.,4.]], dtype=double)
+ a = array([[1., 2.], [3., 4.]], dtype=double)
b = array([2., 1.], dtype=double)
self.do(a, b)
def test_double_2(self):
- a = array([[1.,2.], [3.,4.]], dtype=double)
+ a = array([[1., 2.], [3., 4.]], dtype=double)
b = array([[2., 1., 4.], [3., 4., 6.]], dtype=double)
self.do(a, b)
def test_csingle(self):
- a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=csingle)
+ a = array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=csingle)
b = array([2.+1j, 1.+2j], dtype=csingle)
self.do(a, b)
def test_cdouble(self):
- a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=cdouble)
+ a = array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=cdouble)
b = array([2.+1j, 1.+2j], dtype=cdouble)
self.do(a, b)
def test_cdouble_2(self):
- a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=cdouble)
+ a = array([[1.+2j, 2+3j], [3+4j, 4+5j]], dtype=cdouble)
b = array([[2.+1j, 1.+2j, 1+3j], [1-2j, 1-3j, 1-6j]], dtype=cdouble)
self.do(a, b)
@@ -78,71 +78,71 @@ class LinalgTestCase(object):
pass
def test_nonarray(self):
- a = [[1,2], [3,4]]
+ a = [[1, 2], [3, 4]]
b = [2, 1]
- self.do(a,b)
+ self.do(a, b)
def test_matrix_b_only(self):
"""Check that matrix type is preserved."""
- a = array([[1.,2.], [3.,4.]])
+ a = array([[1., 2.], [3., 4.]])
b = matrix([2., 1.]).T
self.do(a, b)
def test_matrix_a_and_b(self):
"""Check that matrix type is preserved."""
- a = matrix([[1.,2.], [3.,4.]])
+ a = matrix([[1., 2.], [3., 4.]])
b = matrix([2., 1.]).T
self.do(a, b)
class LinalgNonsquareTestCase(object):
def test_single_nsq_1(self):
- a = array([[1.,2.,3.], [3.,4.,6.]], dtype=single)
+ a = array([[1., 2., 3.], [3., 4., 6.]], dtype=single)
b = array([2., 1.], dtype=single)
self.do(a, b)
def test_single_nsq_2(self):
- a = array([[1.,2.], [3.,4.], [5.,6.]], dtype=single)
+ a = array([[1., 2.], [3., 4.], [5., 6.]], dtype=single)
b = array([2., 1., 3.], dtype=single)
self.do(a, b)
def test_double_nsq_1(self):
- a = array([[1.,2.,3.], [3.,4.,6.]], dtype=double)
+ a = array([[1., 2., 3.], [3., 4., 6.]], dtype=double)
b = array([2., 1.], dtype=double)
self.do(a, b)
def test_double_nsq_2(self):
- a = array([[1.,2.], [3.,4.], [5.,6.]], dtype=double)
+ a = array([[1., 2.], [3., 4.], [5., 6.]], dtype=double)
b = array([2., 1., 3.], dtype=double)
self.do(a, b)
def test_csingle_nsq_1(self):
- a = array([[1.+1j,2.+2j,3.-3j], [3.-5j,4.+9j,6.+2j]], dtype=csingle)
+ a = array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=csingle)
b = array([2.+1j, 1.+2j], dtype=csingle)
self.do(a, b)
def test_csingle_nsq_2(self):
- a = array([[1.+1j,2.+2j], [3.-3j,4.-9j], [5.-4j,6.+8j]], dtype=csingle)
+ a = array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=csingle)
b = array([2.+1j, 1.+2j, 3.-3j], dtype=csingle)
self.do(a, b)
def test_cdouble_nsq_1(self):
- a = array([[1.+1j,2.+2j,3.-3j], [3.-5j,4.+9j,6.+2j]], dtype=cdouble)
+ a = array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=cdouble)
b = array([2.+1j, 1.+2j], dtype=cdouble)
self.do(a, b)
def test_cdouble_nsq_2(self):
- a = array([[1.+1j,2.+2j], [3.-3j,4.-9j], [5.-4j,6.+8j]], dtype=cdouble)
+ a = array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=cdouble)
b = array([2.+1j, 1.+2j, 3.-3j], dtype=cdouble)
self.do(a, b)
def test_cdouble_nsq_1_2(self):
- a = array([[1.+1j,2.+2j,3.-3j], [3.-5j,4.+9j,6.+2j]], dtype=cdouble)
+ a = array([[1.+1j, 2.+2j, 3.-3j], [3.-5j, 4.+9j, 6.+2j]], dtype=cdouble)
b = array([[2.+1j, 1.+2j], [1-1j, 2-2j]], dtype=cdouble)
self.do(a, b)
def test_cdouble_nsq_2_2(self):
- a = array([[1.+1j,2.+2j], [3.-3j,4.-9j], [5.-4j,6.+8j]], dtype=cdouble)
+ a = array([[1.+1j, 2.+2j], [3.-3j, 4.-9j], [5.-4j, 6.+8j]], dtype=cdouble)
b = array([[2.+1j, 1.+2j], [1-1j, 2-2j], [1-1j, 2-2j]], dtype=cdouble)
self.do(a, b)
@@ -211,14 +211,14 @@ class TestSolve(LinalgTestCase, LinalgGeneralizedTestCase, TestCase):
a = np.arange(8).reshape(2, 2, 2)
b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass)
- expected = linalg.solve(a, b)[:,0:0,:]
- result = linalg.solve(a[:,0:0,0:0], b[:,0:0,:])
+ expected = linalg.solve(a, b)[:, 0:0,:]
+ result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0,:])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
# Test errors for non-square and only b's dimension being 0
- assert_raises(linalg.LinAlgError, linalg.solve, a[:,0:0,0:1], b)
- assert_raises(ValueError, linalg.solve, a, b[:,0:0,:])
+ assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b)
+ assert_raises(ValueError, linalg.solve, a, b[:, 0:0,:])
# Test broadcasting error
b = np.arange(6).reshape(1, 3, 2) # broadcasting error
@@ -227,15 +227,15 @@ class TestSolve(LinalgTestCase, LinalgGeneralizedTestCase, TestCase):
# Test zero "single equations" with 0x0 matrices.
b = np.arange(2).reshape(1, 2).view(ArraySubclass)
- expected = linalg.solve(a, b)[:,0:0]
- result = linalg.solve(a[:,0:0,0:0], b[:,0:0])
+ expected = linalg.solve(a, b)[:, 0:0]
+ result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
b = np.arange(3).reshape(1, 3)
assert_raises(ValueError, linalg.solve, a, b)
assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
- assert_raises(ValueError, linalg.solve, a[:,0:0,0:0], b)
+ assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b)
class TestInv(LinalgTestCase, LinalgGeneralizedTestCase, TestCase):
@@ -256,13 +256,13 @@ class TestInv(LinalgTestCase, LinalgGeneralizedTestCase, TestCase):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
- a = np.zeros((0,1,1), dtype=np.int_).view(ArraySubclass)
+ a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res = linalg.inv(a)
assert_(res.dtype.type is np.float64)
assert_equal(a.shape, res.shape)
assert_(isinstance(a, ArraySubclass))
- a = np.zeros((0,0), dtype=np.complex64).view(ArraySubclass)
+ a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res = linalg.inv(a)
assert_(res.dtype.type is np.complex64)
assert_equal(a.shape, res.shape)
@@ -288,7 +288,7 @@ class TestEig(LinalgTestCase, LinalgGeneralizedTestCase, TestCase):
def do(self, a, b):
evalues, evectors = linalg.eig(a)
if evectors.ndim == 3:
- assert_almost_equal(dot_generalized(a, evectors), evectors * evalues[:,None,:])
+ assert_almost_equal(dot_generalized(a, evectors), evectors * evalues[:, None,:])
else:
assert_almost_equal(dot(a, evectors), multiply(evectors, evalues))
assert_(imply(isinstance(a, matrix), isinstance(evectors, matrix)))
@@ -313,7 +313,7 @@ class TestSVD(LinalgTestCase, LinalgGeneralizedTestCase, TestCase):
def do(self, a, b):
u, s, vt = linalg.svd(a, 0)
if u.ndim == 3:
- assert_almost_equal(a, dot_generalized(u * s[:,None,:], vt))
+ assert_almost_equal(a, dot_generalized(u * s[:, None,:], vt))
else:
assert_almost_equal(a, dot(multiply(u, s), vt))
assert_(imply(isinstance(a, matrix), isinstance(u, matrix)))
@@ -344,13 +344,13 @@ class TestCond2(LinalgTestCase, TestCase):
def do(self, a, b):
c = asarray(a) # a might be a matrix
s = linalg.svd(c, compute_uv=False)
- old_assert_almost_equal(s[0]/s[-1], linalg.cond(a,2), decimal=5)
+ old_assert_almost_equal(s[0]/s[-1], linalg.cond(a, 2), decimal=5)
class TestCondInf(TestCase):
def test(self):
- A = array([[1.,0,0],[0,-2.,0],[0,0,3.]])
- assert_almost_equal(linalg.cond(A,inf),3.)
+ A = array([[1., 0, 0], [0, -2., 0], [0, 0, 3.]])
+ assert_almost_equal(linalg.cond(A, inf), 3.)
class TestPinv(LinalgTestCase, TestCase):
@@ -426,10 +426,10 @@ class TestLstsq(LinalgTestCase, LinalgNonsquareTestCase, TestCase):
class TestMatrixPower(object):
- R90 = array([[0,1],[-1,0]])
- Arb22 = array([[4,-7],[-2,10]])
- noninv = array([[1,0],[0,0]])
- arbfloat = array([[0.1,3.2],[1.2,0.7]])
+ R90 = array([[0, 1], [-1, 0]])
+ Arb22 = array([[4, -7], [-2, 10]])
+ noninv = array([[1, 0], [0, 0]])
+ arbfloat = array([[0.1, 3.2], [1.2, 0.7]])
large = identity(10)
t = large[1,:].copy()
@@ -437,14 +437,14 @@ class TestMatrixPower(object):
large[0,:] = t
def test_large_power(self):
- assert_equal(matrix_power(self.R90,2**100+2**10+2**5+1),self.R90)
+ assert_equal(matrix_power(self.R90, 2**100+2**10+2**5+1), self.R90)
def test_large_power_trailing_zero(self):
- assert_equal(matrix_power(self.R90,2**100+2**10+2**5),identity(2))
+ assert_equal(matrix_power(self.R90, 2**100+2**10+2**5), identity(2))
def testip_zero(self):
def tz(M):
- mz = matrix_power(M,0)
+ mz = matrix_power(M, 0)
assert_equal(mz, identity(M.shape[0]))
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
@@ -452,7 +452,7 @@ class TestMatrixPower(object):
def testip_one(self):
def tz(M):
- mz = matrix_power(M,1)
+ mz = matrix_power(M, 1)
assert_equal(mz, M)
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
@@ -460,46 +460,46 @@ class TestMatrixPower(object):
def testip_two(self):
def tz(M):
- mz = matrix_power(M,2)
- assert_equal(mz, dot(M,M))
+ mz = matrix_power(M, 2)
+ assert_equal(mz, dot(M, M))
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
yield tz, M
def testip_invert(self):
def tz(M):
- mz = matrix_power(M,-1)
- assert_almost_equal(identity(M.shape[0]), dot(mz,M))
+ mz = matrix_power(M, -1)
+ assert_almost_equal(identity(M.shape[0]), dot(mz, M))
for M in [self.R90, self.Arb22, self.arbfloat, self.large]:
yield tz, M
def test_invert_noninvertible(self):
import numpy.linalg
assert_raises(numpy.linalg.linalg.LinAlgError,
- lambda: matrix_power(self.noninv,-1))
+ lambda: matrix_power(self.noninv, -1))
class TestBoolPower(TestCase):
def test_square(self):
- A = array([[True,False],[True,True]])
- assert_equal(matrix_power(A,2),A)
+ A = array([[True, False], [True, True]])
+ assert_equal(matrix_power(A, 2), A)
class HermitianTestCase(object):
def test_single(self):
- a = array([[1.,2.], [2.,1.]], dtype=single)
+ a = array([[1., 2.], [2., 1.]], dtype=single)
self.do(a, None)
def test_double(self):
- a = array([[1.,2.], [2.,1.]], dtype=double)
+ a = array([[1., 2.], [2., 1.]], dtype=double)
self.do(a, None)
def test_csingle(self):
- a = array([[1.,2+3j], [2-3j,1]], dtype=csingle)
+ a = array([[1., 2+3j], [2-3j, 1]], dtype=csingle)
self.do(a, None)
def test_cdouble(self):
- a = array([[1.,2+3j], [2-3j,1]], dtype=cdouble)
+ a = array([[1., 2+3j], [2-3j, 1]], dtype=cdouble)
self.do(a, None)
def test_empty(self):
@@ -507,17 +507,17 @@ class HermitianTestCase(object):
assert_raises(linalg.LinAlgError, self.do, a, None)
def test_nonarray(self):
- a = [[1,2], [2,1]]
+ a = [[1, 2], [2, 1]]
self.do(a, None)
def test_matrix_b_only(self):
"""Check that matrix type is preserved."""
- a = array([[1.,2.], [2.,1.]])
+ a = array([[1., 2.], [2., 1.]])
self.do(a, None)
def test_matrix_a_and_b(self):
"""Check that matrix type is preserved."""
- a = matrix([[1.,2.], [2.,1.]])
+ a = matrix([[1., 2.], [2., 1.]])
self.do(a, None)
@@ -623,7 +623,7 @@ class _TestNorm(TestCase):
# or column separately.
A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
- expected0 = [norm(A[:,k], ord=order) for k in range(A.shape[1])]
+ expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
assert_almost_equal(norm(A, ord=order, axis=0), expected0)
expected1 = [norm(A[k,:], ord=order) for k in range(A.shape[0])]
assert_almost_equal(norm(A, ord=order, axis=1), expected1)
@@ -644,11 +644,11 @@ class _TestNorm(TestCase):
assert_almost_equal(n, expected)
n = norm(B, ord=order, axis=(0, 2))
- expected = [norm(B[:,k,:], ord=order) for k in range(B.shape[1])]
+ expected = [norm(B[:, k,:], ord=order) for k in range(B.shape[1])]
assert_almost_equal(n, expected)
n = norm(B, ord=order, axis=(0, 1))
- expected = [norm(B[:,:,k], ord=order) for k in range(B.shape[2])]
+ expected = [norm(B[:,:, k], ord=order) for k in range(B.shape[2])]
assert_almost_equal(n, expected)
def test_bad_args(self):
@@ -696,17 +696,17 @@ class TestMatrixRank(object):
# Full rank matrix
yield assert_equal, 4, matrix_rank(np.eye(4))
# rank deficient matrix
- I=np.eye(4); I[-1,-1] = 0.
+ I=np.eye(4); I[-1, -1] = 0.
yield assert_equal, matrix_rank(I), 3
# All zeros - zero rank
- yield assert_equal, matrix_rank(np.zeros((4,4))), 0
+ yield assert_equal, matrix_rank(np.zeros((4, 4))), 0
# 1 dimension - rank 1 unless all 0
yield assert_equal, matrix_rank([1, 0, 0, 0]), 1
yield assert_equal, matrix_rank(np.zeros((4,))), 0
# accepts array-like
yield assert_equal, matrix_rank([1]), 1
# greater than 2 dimensions raises error
- yield assert_raises, TypeError, matrix_rank, np.zeros((2,2,2))
+ yield assert_raises, TypeError, matrix_rank, np.zeros((2, 2, 2))
# works on scalar
yield assert_equal, matrix_rank(1), 1
@@ -769,7 +769,7 @@ class TestQR(TestCase):
def test_qr_empty(self):
- a = np.zeros((0,2))
+ a = np.zeros((0, 2))
self.assertRaises(linalg.LinAlgError, linalg.qr, a)
@@ -864,7 +864,7 @@ def test_generalized_raise_multiloop():
x = np.zeros([4, 4, 2, 2])[1::2]
x[...] = invertible
- x[0,0] = non_invertible
+ x[0, 0] = non_invertible
assert_raises(np.linalg.LinAlgError, np.linalg.inv, x)
diff --git a/numpy/linalg/tests/test_regression.py b/numpy/linalg/tests/test_regression.py
index 76fe4be10..4ff14a6a5 100644
--- a/numpy/linalg/tests/test_regression.py
+++ b/numpy/linalg/tests/test_regression.py
@@ -20,13 +20,13 @@ class TestRegression(TestCase):
-6.57612485e-01+10.41755503j,
-6.57612485e-01-10.41755503j,
1.82126812e+01 +0.j,
- 1.06011014e+01 +0.j ,
- 7.80732773e+00 +0.j ,
+ 1.06011014e+01 +0.j,
+ 7.80732773e+00 +0.j,
-7.65390898e-01 +0.j,
- 1.51971555e-15 +0.j ,
+ 1.51971555e-15 +0.j,
-1.51308713e-15 +0.j])
a = arange(13*13, dtype = float64)
- a.shape = (13,13)
+ a.shape = (13, 13)
a = a%17
va, ve = linalg.eig(a)
va.sort()