summaryrefslogtreecommitdiff
path: root/numpy/linalg
diff options
context:
space:
mode:
authorMarten van Kerkwijk <mhvk@astro.utoronto.ca>2018-04-27 10:05:45 -0400
committerMarten van Kerkwijk <mhvk@astro.utoronto.ca>2018-04-29 11:18:15 -0400
commite3eeec78a902cb2fcbf67d8c4e1ffc6141ed68f3 (patch)
tree2eb92fb595eb7da020bd26ec069e51f665305909 /numpy/linalg
parentf3c3a969ff6c3f596d30137a90d87c745cc42497 (diff)
downloadnumpy-e3eeec78a902cb2fcbf67d8c4e1ffc6141ed68f3.tar.gz
MAINT: Move matrix_power to linalg
The docstring already assumed it was in linalg, and this ensures linalg becomes completely independent of matrixlib.
Diffstat (limited to 'numpy/linalg')
-rw-r--r--numpy/linalg/linalg.py114
1 files changed, 111 insertions, 3 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index 5ee230f92..dc1fa5dea 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -24,12 +24,12 @@ from numpy.core import (
add, multiply, sqrt, maximum, fastCopyAndTranspose, sum, isfinite, size,
finfo, errstate, geterrobj, longdouble, moveaxis, amin, amax, product, abs,
broadcast, atleast_2d, intp, asanyarray, object_, ones, matmul,
- swapaxes, divide, count_nonzero, ndarray, isnan
+ swapaxes, divide, count_nonzero, ndarray, isnan, identity, issubdtype,
+ binary_repr, integer
)
from numpy.core.multiarray import normalize_axis_index
-from numpy.lib import triu, asfarray
+from numpy.lib.twodim_base import triu
from numpy.linalg import lapack_lite, _umath_linalg
-from numpy.matrixlib.defmatrix import matrix_power
# For Python2/3 compatibility
_N = b'N'
@@ -532,6 +532,114 @@ def inv(a):
return wrap(ainv.astype(result_t, copy=False))
+def matrix_power(M, n):
+ """
+ Raise a square matrix to the (integer) power `n`.
+
+ For positive integers `n`, the power is computed by repeated matrix
+ squarings and matrix multiplications. If ``n == 0``, the identity matrix
+ of the same shape as M is returned. If ``n < 0``, the inverse
+ is computed and then raised to the ``abs(n)``.
+
+ Parameters
+ ----------
+ M : ndarray or matrix object
+ Matrix to be "powered." Must be square, i.e. ``M.shape == (m, m)``,
+ with `m` a positive integer.
+ n : int
+ The exponent can be any integer or long integer, positive,
+ negative, or zero.
+
+ Returns
+ -------
+ M**n : ndarray or matrix object
+ The return value is the same shape and type as `M`;
+ if the exponent is positive or zero then the type of the
+ elements is the same as those of `M`. If the exponent is
+ negative the elements are floating-point.
+
+ Raises
+ ------
+ LinAlgError
+ If the matrix is not numerically invertible.
+
+ See Also
+ --------
+ matrix
+ Provides an equivalent function as the exponentiation operator
+ (``**``, not ``^``).
+
+ Examples
+ --------
+ >>> from numpy import linalg as LA
+ >>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
+ >>> LA.matrix_power(i, 3) # should = -i
+ array([[ 0, -1],
+ [ 1, 0]])
+ >>> LA.matrix_power(np.matrix(i), 3) # matrix arg returns matrix
+ matrix([[ 0, -1],
+ [ 1, 0]])
+ >>> LA.matrix_power(i, 0)
+ array([[1, 0],
+ [0, 1]])
+ >>> LA.matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
+ array([[ 0., 1.],
+ [-1., 0.]])
+
+ Somewhat more sophisticated example
+
+ >>> q = np.zeros((4, 4))
+ >>> q[0:2, 0:2] = -i
+ >>> q[2:4, 2:4] = i
+ >>> q # one of the three quaternion units not equal to 1
+ array([[ 0., -1., 0., 0.],
+ [ 1., 0., 0., 0.],
+ [ 0., 0., 0., 1.],
+ [ 0., 0., -1., 0.]])
+ >>> LA.matrix_power(q, 2) # = -np.eye(4)
+ array([[-1., 0., 0., 0.],
+ [ 0., -1., 0., 0.],
+ [ 0., 0., -1., 0.],
+ [ 0., 0., 0., -1.]])
+
+ """
+ M = asanyarray(M)
+ if M.ndim != 2 or M.shape[0] != M.shape[1]:
+ raise ValueError("input must be a square array")
+ if not issubdtype(type(n), integer):
+ raise TypeError("exponent must be an integer")
+
+ from numpy.linalg import inv
+
+ if n==0:
+ M = M.copy()
+ M[:] = identity(M.shape[0])
+ return M
+ elif n<0:
+ M = inv(M)
+ n *= -1
+
+ result = M
+ if n <= 3:
+ for _ in range(n-1):
+ result=dot(result, M)
+ return result
+
+ # binary decomposition to reduce the number of Matrix
+ # multiplications for n > 3.
+ beta = binary_repr(n)
+ Z, q, t = M, 0, len(beta)
+ while beta[t-q-1] == '0':
+ Z = dot(Z, Z)
+ q += 1
+ result = Z
+ for k in range(q+1, t):
+ Z = dot(Z, Z)
+ if beta[t-k-1] == '1':
+ result = dot(result, Z)
+ return result
+
+
# Cholesky decomposition
def cholesky(a):