summaryrefslogtreecommitdiff
path: root/numpy/ma
diff options
context:
space:
mode:
authorpierregm <pierregm@localhost>2010-05-16 23:31:21 +0000
committerpierregm <pierregm@localhost>2010-05-16 23:31:21 +0000
commitea2be6e15d024fab1ef41713ef9eab4605c4ea3e (patch)
treeaf8bce8a14882752e720e78a5410105e409bd331 /numpy/ma
parent97a38c4a4233fb133b2f2fa8b4fad9e65657f572 (diff)
downloadnumpy-ea2be6e15d024fab1ef41713ef9eab4605c4ea3e.tar.gz
* Added `apply_over_axes` as requested in ticket #1480
Diffstat (limited to 'numpy/ma')
-rw-r--r--numpy/ma/extras.py180
-rw-r--r--numpy/ma/tests/test_extras.py434
2 files changed, 326 insertions, 288 deletions
diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py
index 5804cf3c1..094478545 100644
--- a/numpy/ma/extras.py
+++ b/numpy/ma/extras.py
@@ -11,14 +11,14 @@ A collection of utilities for `numpy.ma`.
__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)"
__version__ = '1.0'
__revision__ = "$Revision: 3473 $"
-__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
+__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
-__all__ = ['apply_along_axis', 'atleast_1d', 'atleast_2d', 'atleast_3d',
- 'average',
+__all__ = ['apply_along_axis', 'apply_over_axes', 'atleast_1d', 'atleast_2d',
+ 'atleast_3d', 'average',
'clump_masked', 'clump_unmasked', 'column_stack', 'compress_cols',
'compress_rowcols', 'compress_rows', 'count_masked', 'corrcoef',
'cov',
- 'diagflat', 'dot','dstack',
+ 'diagflat', 'dot', 'dstack',
'ediff1d',
'flatnotmasked_contiguous', 'flatnotmasked_edges',
'hsplit', 'hstack',
@@ -37,8 +37,8 @@ import itertools
import warnings
import core as ma
-from core import MaskedArray, MAError, add, array, asarray, concatenate, count,\
- filled, getmask, getmaskarray, make_mask_descr, masked, masked_array,\
+from core import MaskedArray, MAError, add, array, asarray, concatenate, count, \
+ filled, getmask, getmaskarray, make_mask_descr, masked, masked_array, \
mask_or, nomask, ones, sort, zeros
#from core import *
@@ -271,7 +271,7 @@ class _fromnxfunction:
def __call__(self, *args, **params):
func = getattr(np, self.__name__)
- if len(args)==1:
+ if len(args) == 1:
x = args[0]
if isinstance(x, ndarray):
_d = func(np.asarray(x), **params)
@@ -284,7 +284,7 @@ class _fromnxfunction:
else:
arrays = []
args = list(args)
- while len(args)>0 and issequence(args[0]):
+ while len(args) > 0 and issequence(args[0]):
arrays.append(args.pop(0))
res = []
for x in arrays:
@@ -317,8 +317,8 @@ def flatten_inplace(seq):
"""Flatten a sequence in place."""
k = 0
while (k != len(seq)):
- while hasattr(seq[k],'__iter__'):
- seq[k:(k+1)] = seq[k]
+ while hasattr(seq[k], '__iter__'):
+ seq[k:(k + 1)] = seq[k]
k += 1
return seq
@@ -333,12 +333,12 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs):
axis += nd
if (axis >= nd):
raise ValueError("axis must be less than arr.ndim; axis=%d, rank=%d."
- % (axis,nd))
- ind = [0]*(nd-1)
- i = np.zeros(nd,'O')
+ % (axis, nd))
+ ind = [0] * (nd - 1)
+ i = np.zeros(nd, 'O')
indlist = range(nd)
indlist.remove(axis)
- i[axis] = slice(None,None)
+ i[axis] = slice(None, None)
outshape = np.asarray(arr.shape).take(indlist)
i.put(indlist, ind)
j = i.copy()
@@ -364,8 +364,8 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs):
# increment the index
ind[-1] += 1
n = -1
- while (ind[n] >= outshape[n]) and (n > (1-nd)):
- ind[n-1] += 1
+ while (ind[n] >= outshape[n]) and (n > (1 - nd)):
+ ind[n - 1] += 1
ind[n] = 0
n -= 1
i.put(indlist, ind)
@@ -391,8 +391,8 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs):
# increment the index
ind[-1] += 1
n = -1
- while (ind[n] >= holdshape[n]) and (n > (1-nd)):
- ind[n-1] += 1
+ while (ind[n] >= holdshape[n]) and (n > (1 - nd)):
+ ind[n - 1] += 1
ind[n] = 0
n -= 1
i.put(indlist, ind)
@@ -411,6 +411,32 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs):
apply_along_axis.__doc__ = np.apply_along_axis.__doc__
+def apply_over_axes(func, a, axes):
+ """
+ (This docstring will be overwritten)
+ """
+ val = np.asarray(a)
+ msk = getmaskarray(a)
+ N = a.ndim
+ if array(axes).ndim == 0:
+ axes = (axes,)
+ for axis in axes:
+ if axis < 0: axis = N + axis
+ args = (val, axis)
+ res = ma.array(func(*(val, axis)), mask=func(*(msk, axis)))
+ if res.ndim == val.ndim:
+ (val, msk) = (res._data, res._mask)
+ else:
+ res = ma.expand_dims(res, axis)
+ if res.ndim == val.ndim:
+ (val, msk) = (res._data, res._mask)
+ else:
+ raise ValueError("Function is not returning"\
+ " an array of correct shape")
+ return val
+apply_over_axes.__doc__ = np.apply_over_axes.__doc__
+
+
def average(a, axis=None, weights=None, returned=False):
"""
Return the weighted average of array over the given axis.
@@ -496,15 +522,15 @@ def average(a, axis=None, weights=None, returned=False):
wsh = (1,)
if wsh == ash:
w = np.array(w, float, copy=0)
- n = add.reduce(a*w, axis)
+ n = add.reduce(a * w, axis)
d = add.reduce(w, axis)
del w
elif wsh == (ash[axis],):
ni = ash[axis]
- r = [None]*len(ash)
+ r = [None] * len(ash)
r[axis] = slice(None, None, 1)
- w = eval ("w["+ repr(tuple(r)) + "] * ones(ash, float)")
- n = add.reduce(a*w, axis, dtype=float)
+ w = eval ("w[" + repr(tuple(r)) + "] * ones(ash, float)")
+ n = add.reduce(a * w, axis, dtype=float)
d = add.reduce(w, axis, dtype=float)
del w, r
else:
@@ -520,26 +546,26 @@ def average(a, axis=None, weights=None, returned=False):
wsh = (1,)
if wsh == ash:
w = array(w, dtype=float, mask=mask, copy=0)
- n = add.reduce(a*w, axis, dtype=float)
+ n = add.reduce(a * w, axis, dtype=float)
d = add.reduce(w, axis, dtype=float)
elif wsh == (ash[axis],):
ni = ash[axis]
- r = [None]*len(ash)
+ r = [None] * len(ash)
r[axis] = slice(None, None, 1)
- w = eval ("w["+ repr(tuple(r)) + \
+ w = eval ("w[" + repr(tuple(r)) + \
"] * masked_array(ones(ash, float), mask)")
- n = add.reduce(a*w, axis, dtype=float)
+ n = add.reduce(a * w, axis, dtype=float)
d = add.reduce(w, axis, dtype=float)
else:
raise ValueError, 'average: weights wrong shape.'
del w
if n is masked or d is masked:
return masked
- result = n/d
+ result = n / d
del n
if isinstance(result, MaskedArray):
- if ((axis is None) or (axis==0 and a.ndim == 1)) and \
+ if ((axis is None) or (axis == 0 and a.ndim == 1)) and \
(result.mask is nomask):
result = result._data
if returned:
@@ -615,12 +641,12 @@ def median(a, axis=None, out=None, overwrite_input=False):
"""
def _median1D(data):
- counts = filled(count(data),0)
+ counts = filled(count(data), 0)
(idx, rmd) = divmod(counts, 2)
if rmd:
- choice = slice(idx, idx+1)
+ choice = slice(idx, idx + 1)
else:
- choice = slice(idx-1, idx+1)
+ choice = slice(idx - 1, idx + 1)
return data[choice].mean(0)
#
if overwrite_input:
@@ -710,7 +736,7 @@ def compress_rowcols(x, axis=None):
if axis in [None, 1, -1]:
for j in np.unique(masked[1]):
idxc.remove(j)
- return x._data[idxr][:,idxc]
+ return x._data[idxr][:, idxc]
def compress_rows(a):
"""
@@ -827,7 +853,7 @@ def mask_rowcols(a, axis=None):
if not axis:
a[np.unique(maskedval[0])] = masked
if axis in [None, 1, -1]:
- a[:,np.unique(maskedval[1])] = masked
+ a[:, np.unique(maskedval[1])] = masked
return a
def mask_rows(a, axis=None):
@@ -921,7 +947,7 @@ def mask_cols(a, axis=None):
return mask_rowcols(a, 1)
-def dot(a,b, strict=False):
+def dot(a, b, strict=False):
"""
Return the dot product of two arrays.
@@ -1114,15 +1140,15 @@ def in1d(ar1, ar2, assume_unique=False):
ar1, rev_idx = unique(ar1, return_inverse=True)
ar2 = unique(ar2)
- ar = ma.concatenate( (ar1, ar2) )
+ ar = ma.concatenate((ar1, ar2))
# We need this to be a stable sort, so always use 'mergesort'
# here. The values from the first array should always come before
# the values from the second array.
order = ar.argsort(kind='mergesort')
sar = ar[order]
equal_adj = (sar[1:] == sar[:-1])
- flag = ma.concatenate( (equal_adj, [False] ) )
- indx = order.argsort(kind='mergesort')[:len( ar1 )]
+ flag = ma.concatenate((equal_adj, [False]))
+ indx = order.argsort(kind='mergesort')[:len(ar1)]
if assume_unique:
return flag[indx]
@@ -1199,10 +1225,10 @@ def intersect1d_nu(ar1, ar2):
def setmember1d(ar1, ar2):
""" This function is deprecated. Use ma.in1d() instead."""
ar1 = ma.asanyarray(ar1)
- ar2 = ma.asanyarray( ar2 )
- ar = ma.concatenate((ar1, ar2 ))
- b1 = ma.zeros(ar1.shape, dtype = np.int8)
- b2 = ma.ones(ar2.shape, dtype = np.int8)
+ ar2 = ma.asanyarray(ar2)
+ ar = ma.concatenate((ar1, ar2))
+ b1 = ma.zeros(ar1.shape, dtype=np.int8)
+ b2 = ma.ones(ar2.shape, dtype=np.int8)
tt = ma.concatenate((b1, b2))
# We need this to be a stable sort, so always use 'mergesort' here. The
@@ -1213,12 +1239,12 @@ def setmember1d(ar1, ar2):
aux2 = tt[perm]
# flag = ediff1d( aux, 1 ) == 0
flag = ma.concatenate((aux[1:] == aux[:-1], [False]))
- ii = ma.where( flag * aux2 )[0]
- aux = perm[ii+1]
- perm[ii+1] = perm[ii]
+ ii = ma.where(flag * aux2)[0]
+ aux = perm[ii + 1]
+ perm[ii + 1] = perm[ii]
perm[ii] = aux
#
- indx = perm.argsort(kind='mergesort')[:len( ar1 )]
+ indx = perm.argsort(kind='mergesort')[:len(ar1)]
#
return flag[indx]
@@ -1246,7 +1272,7 @@ def _covhelper(x, y=None, rowvar=True, allow_masked=True):
rowvar = True
# Make sure that rowvar is either 0 or 1
rowvar = int(bool(rowvar))
- axis = 1-rowvar
+ axis = 1 - rowvar
if rowvar:
tup = (slice(None), None)
else:
@@ -1267,7 +1293,7 @@ def _covhelper(x, y=None, rowvar=True, allow_masked=True):
x.unshare_mask()
y.unshare_mask()
xmask = x._mask = y._mask = ymask = common_mask
- x = ma.concatenate((x,y),axis)
+ x = ma.concatenate((x, y), axis)
xnotmask = np.logical_not(np.concatenate((xmask, ymask), axis)).astype(int)
x -= x.mean(axis=rowvar)[tup]
return (x, xnotmask, rowvar)
@@ -1321,10 +1347,10 @@ def cov(x, y=None, rowvar=True, bias=False, allow_masked=True):
"""
(x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked)
if not rowvar:
- fact = np.dot(xnotmask.T, xnotmask)*1. - (1 - bool(bias))
+ fact = np.dot(xnotmask.T, xnotmask) * 1. - (1 - bool(bias))
result = (dot(x.T, x.conj(), strict=False) / fact).squeeze()
else:
- fact = np.dot(xnotmask, xnotmask.T)*1. - (1 - bool(bias))
+ fact = np.dot(xnotmask, xnotmask.T) * 1. - (1 - bool(bias))
result = (dot(x, x.T.conj(), strict=False) / fact).squeeze()
return result
@@ -1369,10 +1395,10 @@ def corrcoef(x, y=None, rowvar=True, bias=False, allow_masked=True):
(x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked)
# Compute the covariance matrix
if not rowvar:
- fact = np.dot(xnotmask.T, xnotmask)*1. - (1 - bool(bias))
+ fact = np.dot(xnotmask.T, xnotmask) * 1. - (1 - bool(bias))
c = (dot(x.T, x.conj(), strict=False) / fact).squeeze()
else:
- fact = np.dot(xnotmask, xnotmask.T)*1. - (1 - bool(bias))
+ fact = np.dot(xnotmask, xnotmask.T) * 1. - (1 - bool(bias))
c = (dot(x, x.T.conj(), strict=False) / fact).squeeze()
# Check whether we have a scalar
try:
@@ -1384,20 +1410,20 @@ def corrcoef(x, y=None, rowvar=True, bias=False, allow_masked=True):
_denom = ma.sqrt(ma.multiply.outer(diag, diag))
else:
_denom = diagflat(diag)
- n = x.shape[1-rowvar]
+ n = x.shape[1 - rowvar]
if rowvar:
- for i in range(n-1):
- for j in range(i+1,n):
+ for i in range(n - 1):
+ for j in range(i + 1, n):
_x = mask_cols(vstack((x[i], x[j]))).var(axis=1,
- ddof=1-bias)
- _denom[i,j] = _denom[j,i] = ma.sqrt(ma.multiply.reduce(_x))
+ ddof=1 - bias)
+ _denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x))
else:
- for i in range(n-1):
- for j in range(i+1,n):
- _x = mask_cols(vstack((x[:,i], x[:,j]))).var(axis=1,
- ddof=1-bias)
- _denom[i,j] = _denom[j,i] = ma.sqrt(ma.multiply.reduce(_x))
- return c/_denom
+ for i in range(n - 1):
+ for j in range(i + 1, n):
+ _x = mask_cols(vstack((x[:, i], x[:, j]))).var(axis=1,
+ ddof=1 - bias)
+ _denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x))
+ return c / _denom
#####--------------------------------------------------------------------------
#---- --- Concatenation helpers ---
@@ -1418,7 +1444,7 @@ class MAxisConcatenator(AxisConcatenator):
def __init__(self, axis=0):
AxisConcatenator.__init__(self, axis, matrix=False)
- def __getitem__(self,key):
+ def __getitem__(self, key):
if isinstance(key, str):
raise MAError, "Unavailable for masked array."
if type(key) is not tuple:
@@ -1466,7 +1492,7 @@ class MAxisConcatenator(AxisConcatenator):
if final_dtypedescr is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtypedescr)
- res = concatenate(tuple(objs),axis=self.axis)
+ res = concatenate(tuple(objs), axis=self.axis)
return self._retval(res)
class mr_class(MAxisConcatenator):
@@ -1538,10 +1564,10 @@ def flatnotmasked_edges(a):
"""
m = getmask(a)
if m is nomask or not np.any(m):
- return [0,-1]
+ return [0, -1]
unmasked = np.flatnonzero(~m)
if len(unmasked) > 0:
- return unmasked[[0,-1]]
+ return unmasked[[0, -1]]
else:
return None
@@ -1591,9 +1617,9 @@ def notmasked_edges(a, axis=None):
if axis is None or a.ndim == 1:
return flatnotmasked_edges(a)
m = getmaskarray(a)
- idx = array(np.indices(a.shape), mask=np.asarray([m]*a.ndim))
+ idx = array(np.indices(a.shape), mask=np.asarray([m] * a.ndim))
return [tuple([idx[i].min(axis).compressed() for i in range(a.ndim)]),
- tuple([idx[i].max(axis).compressed() for i in range(a.ndim)]),]
+ tuple([idx[i].max(axis).compressed() for i in range(a.ndim)]), ]
def flatnotmasked_contiguous(a):
@@ -1635,15 +1661,15 @@ def flatnotmasked_contiguous(a):
"""
m = getmask(a)
if m is nomask:
- return (a.size, [0,-1])
+ return (a.size, [0, -1])
unmasked = np.flatnonzero(~m)
if len(unmasked) == 0:
return None
result = []
- for (k, group) in itertools.groupby(enumerate(unmasked), lambda (i,x):i-x):
+ for (k, group) in itertools.groupby(enumerate(unmasked), lambda (i, x):i - x):
tmp = np.array([g[1] for g in group], int)
# result.append((tmp.size, tuple(tmp[[0,-1]])))
- result.append( slice(tmp[0], tmp[-1]) )
+ result.append(slice(tmp[0], tmp[-1]))
result.sort()
return result
@@ -1690,19 +1716,19 @@ def notmasked_contiguous(a, axis=None):
a = asarray(a)
nd = a.ndim
if nd > 2:
- raise NotImplementedError,"Currently limited to atmost 2D array."
+ raise NotImplementedError, "Currently limited to atmost 2D array."
if axis is None or nd == 1:
return flatnotmasked_contiguous(a)
#
result = []
#
- other = (axis+1)%2
+ other = (axis + 1) % 2
idx = [0, 0]
idx[axis] = slice(None, None)
#
for i in range(a.shape[other]):
idx[other] = i
- result.append( flatnotmasked_contiguous(a[idx]) )
+ result.append(flatnotmasked_contiguous(a[idx]))
return result
@@ -1831,16 +1857,16 @@ def polyfit(x, y, deg, rcond=None, full=False):
y = mask_rows(y)
my = getmask(y)
if my is not nomask:
- m = mask_or(mx, my[:,0])
+ m = mask_or(mx, my[:, 0])
else:
m = mx
else:
- raise TypeError,"Expected a 1D or 2D array for y!"
+ raise TypeError, "Expected a 1D or 2D array for y!"
if m is not nomask:
x[m] = y[m] = masked
# Set rcond
if rcond is None :
- rcond = len(x)*np.finfo(x.dtype).eps
+ rcond = len(x) * np.finfo(x.dtype).eps
# Scale x to improve condition number
scale = abs(x).max()
if scale != 0 :
diff --git a/numpy/ma/tests/test_extras.py b/numpy/ma/tests/test_extras.py
index 9e2c48b50..d6cda7e70 100644
--- a/numpy/ma/tests/test_extras.py
+++ b/numpy/ma/tests/test_extras.py
@@ -9,7 +9,7 @@ Adapted from the original test_ma by Pierre Gerard-Marchant
__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)"
__version__ = '1.0'
__revision__ = "$Revision: 3473 $"
-__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
+__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
import numpy as np
from numpy.testing import TestCase, run_module_suite
@@ -31,13 +31,13 @@ class TestGeneric(TestCase):
test = masked_all((2,), dtype=dt)
control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
assert_equal(test, control)
- test = masked_all((2,2), dtype=dt)
+ test = masked_all((2, 2), dtype=dt)
control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]],
mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]],
dtype=dt)
assert_equal(test, control)
# Nested dtype
- dt = np.dtype([('a','f'), ('b', [('ba', 'f'), ('bb', 'f')])])
+ dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
test = masked_all((2,), dtype=dt)
control = array([(1, (1, 1)), (1, (1, 1))],
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
@@ -46,7 +46,7 @@ class TestGeneric(TestCase):
control = array([(1, (1, 1)), (1, (1, 1))],
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
assert_equal(test, control)
- test = masked_all((1,1), dtype=dt)
+ test = masked_all((1, 1), dtype=dt)
control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt)
assert_equal(test, control)
@@ -65,7 +65,7 @@ class TestGeneric(TestCase):
control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt)
assert_equal(test, control)
# Nested dtype
- dt = np.dtype([('a','f'), ('b', [('ba', 'f'), ('bb', 'f')])])
+ dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
control = array([(1, (1, 1)), (1, (1, 1))],
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
test = masked_all_like(control)
@@ -85,7 +85,7 @@ class TestGeneric(TestCase):
a = masked_array(np.arange(10))
a[[0, 1, 2, 6, 8, 9]] = masked
test = clump_unmasked(a)
- control = [slice(3, 6), slice(7, 8),]
+ control = [slice(3, 6), slice(7, 8), ]
assert_equal(test, control)
@@ -94,7 +94,7 @@ class TestAverage(TestCase):
"Several tests of average. Why so many ? Good point..."
def test_testAverage1(self):
"Test of average."
- ott = array([0.,1.,2.,3.], mask=[True, False, False, False])
+ ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
assert_equal(2.0, average(ott, axis=0))
assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.]))
result, wts = average(ott, weights=[1., 1., 2., 1.], returned=1)
@@ -104,28 +104,28 @@ class TestAverage(TestCase):
assert_equal(average(ott, axis=0).mask, [True])
ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
ott = ott.reshape(2, 2)
- ott[:,1] = masked
+ ott[:, 1] = masked
assert_equal(average(ott, axis=0), [2.0, 0.0])
assert_equal(average(ott, axis=1).mask[0], [True])
- assert_equal([2.,0.], average(ott, axis=0))
+ assert_equal([2., 0.], average(ott, axis=0))
result, wts = average(ott, axis=0, returned=1)
assert_equal(wts, [1., 0.])
def test_testAverage2(self):
"More tests of average."
- w1 = [0,1,1,1,1,0]
- w2 = [[0,1,1,1,1,0],[1,0,0,0,0,1]]
+ w1 = [0, 1, 1, 1, 1, 0]
+ w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
x = arange(6, dtype=float_)
assert_equal(average(x, axis=0), 2.5)
assert_equal(average(x, axis=0, weights=w1), 2.5)
- y = array([arange(6, dtype=float_), 2.0*arange(6)])
- assert_equal(average(y, None), np.add.reduce(np.arange(6))*3./12.)
- assert_equal(average(y, axis=0), np.arange(6) * 3./2.)
+ y = array([arange(6, dtype=float_), 2.0 * arange(6)])
+ assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.)
+ assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.)
assert_equal(average(y, axis=1),
[average(x, axis=0), average(x, axis=0) * 2.0])
- assert_equal(average(y, None, weights=w2), 20./6.)
+ assert_equal(average(y, None, weights=w2), 20. / 6.)
assert_equal(average(y, axis=0, weights=w2),
- [0.,1.,2.,3.,4.,10.])
+ [0., 1., 2., 3., 4., 10.])
assert_equal(average(y, axis=1),
[average(x, axis=0), average(x, axis=0) * 2.0])
m1 = zeros(6)
@@ -139,11 +139,11 @@ class TestAverage(TestCase):
assert_equal(average(masked_array(x, m5), axis=0), 0.0)
assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
z = masked_array(y, m3)
- assert_equal(average(z, None), 20./6.)
- assert_equal(average(z, axis=0), [0.,1.,99.,99.,4.0, 7.5])
+ assert_equal(average(z, None), 20. / 6.)
+ assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5])
assert_equal(average(z, axis=1), [2.5, 5.0])
- assert_equal(average(z,axis=0, weights=w2),
- [0.,1., 99., 99., 4.0, 10.0])
+ assert_equal(average(z, axis=0, weights=w2),
+ [0., 1., 99., 99., 4.0, 10.0])
def test_testAverage3(self):
"Yet more tests of average!"
@@ -159,13 +159,13 @@ class TestAverage(TestCase):
r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=1)
assert_equal(shape(w2), shape(r2))
a2d = array([[1, 2], [0, 4]], float)
- a2dm = masked_array(a2d, [[False, False],[True, False]])
+ a2dm = masked_array(a2d, [[False, False], [True, False]])
a2da = average(a2d, axis=0)
assert_equal(a2da, [0.5, 3.0])
a2dma = average(a2dm, axis=0)
assert_equal(a2dma, [1.0, 3.0])
a2dma = average(a2dm, axis=None)
- assert_equal(a2dma, 7./3.)
+ assert_equal(a2dma, 7. / 3.)
a2dma = average(a2dm, axis=1)
assert_equal(a2dma, [1.5, 4.0])
@@ -184,33 +184,33 @@ class TestConcatenator(TestCase):
def test_1d(self):
"Tests mr_ on 1D arrays."
- assert_array_equal(mr_[1,2,3,4,5,6],array([1,2,3,4,5,6]))
+ assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6]))
b = ones(5)
- m = [1,0,0,0,0]
- d = masked_array(b,mask=m)
- c = mr_[d,0,0,d]
- self.assertTrue(isinstance(c,MaskedArray) or isinstance(c,core.MaskedArray))
- assert_array_equal(c,[1,1,1,1,1,0,0,1,1,1,1,1])
- assert_array_equal(c.mask, mr_[m,0,0,m])
+ m = [1, 0, 0, 0, 0]
+ d = masked_array(b, mask=m)
+ c = mr_[d, 0, 0, d]
+ self.assertTrue(isinstance(c, MaskedArray) or isinstance(c, core.MaskedArray))
+ assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1])
+ assert_array_equal(c.mask, mr_[m, 0, 0, m])
def test_2d(self):
"Tests mr_ on 2D arrays."
- a_1 = rand(5,5)
- a_2 = rand(5,5)
- m_1 = np.round_(rand(5,5),0)
- m_2 = np.round_(rand(5,5),0)
- b_1 = masked_array(a_1,mask=m_1)
- b_2 = masked_array(a_2,mask=m_2)
- d = mr_['1',b_1,b_2] # append columns
- self.assertTrue(d.shape == (5,10))
- assert_array_equal(d[:,:5],b_1)
- assert_array_equal(d[:,5:],b_2)
- assert_array_equal(d.mask, np.r_['1',m_1,m_2])
- d = mr_[b_1,b_2]
- self.assertTrue(d.shape == (10,5))
- assert_array_equal(d[:5,:],b_1)
- assert_array_equal(d[5:,:],b_2)
- assert_array_equal(d.mask, np.r_[m_1,m_2])
+ a_1 = rand(5, 5)
+ a_2 = rand(5, 5)
+ m_1 = np.round_(rand(5, 5), 0)
+ m_2 = np.round_(rand(5, 5), 0)
+ b_1 = masked_array(a_1, mask=m_1)
+ b_2 = masked_array(a_2, mask=m_2)
+ d = mr_['1', b_1, b_2] # append columns
+ self.assertTrue(d.shape == (5, 10))
+ assert_array_equal(d[:, :5], b_1)
+ assert_array_equal(d[:, 5:], b_2)
+ assert_array_equal(d.mask, np.r_['1', m_1, m_2])
+ d = mr_[b_1, b_2]
+ self.assertTrue(d.shape == (10, 5))
+ assert_array_equal(d[:5, :], b_1)
+ assert_array_equal(d[5:, :], b_2)
+ assert_array_equal(d.mask, np.r_[m_1, m_2])
@@ -256,26 +256,26 @@ class TestNotMasked(TestCase):
def test_contiguous(self):
"Tests notmasked_contiguous"
- a = masked_array(np.arange(24).reshape(3,8),
- mask=[[0,0,0,0,1,1,1,1],
- [1,1,1,1,1,1,1,1],
- [0,0,0,0,0,0,1,0],])
+ a = masked_array(np.arange(24).reshape(3, 8),
+ mask=[[0, 0, 0, 0, 1, 1, 1, 1],
+ [1, 1, 1, 1, 1, 1, 1, 1],
+ [0, 0, 0, 0, 0, 0, 1, 0], ])
tmp = notmasked_contiguous(a, None)
- assert_equal(tmp[-1], slice(23,23,None))
- assert_equal(tmp[-2], slice(16,21,None))
- assert_equal(tmp[-3], slice(0,3,None))
+ assert_equal(tmp[-1], slice(23, 23, None))
+ assert_equal(tmp[-2], slice(16, 21, None))
+ assert_equal(tmp[-3], slice(0, 3, None))
#
tmp = notmasked_contiguous(a, 0)
self.assertTrue(len(tmp[-1]) == 1)
self.assertTrue(tmp[-2] is None)
- assert_equal(tmp[-3],tmp[-1])
+ assert_equal(tmp[-3], tmp[-1])
self.assertTrue(len(tmp[0]) == 2)
#
tmp = notmasked_contiguous(a, 1)
- assert_equal(tmp[0][-1], slice(0,3,None))
+ assert_equal(tmp[0][-1], slice(0, 3, None))
self.assertTrue(tmp[1] is None)
- assert_equal(tmp[2][-1], slice(7,7,None))
- assert_equal(tmp[2][-2], slice(0,5,None))
+ assert_equal(tmp[2][-1], slice(7, 7, None))
+ assert_equal(tmp[2][-2], slice(0, 5, None))
@@ -283,114 +283,114 @@ class Test2DFunctions(TestCase):
"Tests 2D functions"
def test_compress2d(self):
"Tests compress2d"
- x = array(np.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]])
- assert_equal(compress_rowcols(x), [[4,5],[7,8]] )
- assert_equal(compress_rowcols(x,0), [[3,4,5],[6,7,8]] )
- assert_equal(compress_rowcols(x,1), [[1,2],[4,5],[7,8]] )
- x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]])
- assert_equal(compress_rowcols(x), [[0,2],[6,8]] )
- assert_equal(compress_rowcols(x,0), [[0,1,2],[6,7,8]] )
- assert_equal(compress_rowcols(x,1), [[0,2],[3,5],[6,8]] )
- x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]])
- assert_equal(compress_rowcols(x), [[8]] )
- assert_equal(compress_rowcols(x,0), [[6,7,8]] )
- assert_equal(compress_rowcols(x,1,), [[2],[5],[8]] )
- x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]])
- assert_equal(compress_rowcols(x).size, 0 )
- assert_equal(compress_rowcols(x,0).size, 0 )
- assert_equal(compress_rowcols(x,1).size, 0 )
+ x = array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
+ assert_equal(compress_rowcols(x), [[4, 5], [7, 8]])
+ assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]])
+ assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]])
+ x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
+ assert_equal(compress_rowcols(x), [[0, 2], [6, 8]])
+ assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]])
+ assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]])
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
+ assert_equal(compress_rowcols(x), [[8]])
+ assert_equal(compress_rowcols(x, 0), [[6, 7, 8]])
+ assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]])
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
+ assert_equal(compress_rowcols(x).size, 0)
+ assert_equal(compress_rowcols(x, 0).size, 0)
+ assert_equal(compress_rowcols(x, 1).size, 0)
#
def test_mask_rowcols(self):
"Tests mask_rowcols."
- x = array(np.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]])
- assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,0,0],[1,0,0]] )
- assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[0,0,0],[0,0,0]] )
- assert_equal(mask_rowcols(x,1).mask, [[1,0,0],[1,0,0],[1,0,0]] )
- x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]])
- assert_equal(mask_rowcols(x).mask, [[0,1,0],[1,1,1],[0,1,0]] )
- assert_equal(mask_rowcols(x,0).mask, [[0,0,0],[1,1,1],[0,0,0]] )
- assert_equal(mask_rowcols(x,1).mask, [[0,1,0],[0,1,0],[0,1,0]] )
- x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]])
- assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,1,1],[1,1,0]] )
- assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[1,1,1],[0,0,0]] )
- assert_equal(mask_rowcols(x,1,).mask, [[1,1,0],[1,1,0],[1,1,0]] )
- x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]])
+ x = array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
+ assert_equal(mask_rowcols(x).mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
+ assert_equal(mask_rowcols(x, 0).mask, [[1, 1, 1], [0, 0, 0], [0, 0, 0]])
+ assert_equal(mask_rowcols(x, 1).mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
+ x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
+ assert_equal(mask_rowcols(x).mask, [[0, 1, 0], [1, 1, 1], [0, 1, 0]])
+ assert_equal(mask_rowcols(x, 0).mask, [[0, 0, 0], [1, 1, 1], [0, 0, 0]])
+ assert_equal(mask_rowcols(x, 1).mask, [[0, 1, 0], [0, 1, 0], [0, 1, 0]])
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
+ assert_equal(mask_rowcols(x).mask, [[1, 1, 1], [1, 1, 1], [1, 1, 0]])
+ assert_equal(mask_rowcols(x, 0).mask, [[1, 1, 1], [1, 1, 1], [0, 0, 0]])
+ assert_equal(mask_rowcols(x, 1,).mask, [[1, 1, 0], [1, 1, 0], [1, 1, 0]])
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
self.assertTrue(mask_rowcols(x).all() is masked)
- self.assertTrue(mask_rowcols(x,0).all() is masked)
- self.assertTrue(mask_rowcols(x,1).all() is masked)
+ self.assertTrue(mask_rowcols(x, 0).all() is masked)
+ self.assertTrue(mask_rowcols(x, 1).all() is masked)
self.assertTrue(mask_rowcols(x).mask.all())
- self.assertTrue(mask_rowcols(x,0).mask.all())
- self.assertTrue(mask_rowcols(x,1).mask.all())
+ self.assertTrue(mask_rowcols(x, 0).mask.all())
+ self.assertTrue(mask_rowcols(x, 1).mask.all())
#
def test_dot(self):
"Tests dot product"
- n = np.arange(1,7)
- #
- m = [1,0,0,0,0,0]
- a = masked_array(n, mask=m).reshape(2,3)
- b = masked_array(n, mask=m).reshape(3,2)
- c = dot(a,b,True)
- assert_equal(c.mask, [[1,1],[1,0]])
- c = dot(b,a,True)
- assert_equal(c.mask, [[1,1,1],[1,0,0],[1,0,0]])
- c = dot(a,b,False)
+ n = np.arange(1, 7)
+ #
+ m = [1, 0, 0, 0, 0, 0]
+ a = masked_array(n, mask=m).reshape(2, 3)
+ b = masked_array(n, mask=m).reshape(3, 2)
+ c = dot(a, b, True)
+ assert_equal(c.mask, [[1, 1], [1, 0]])
+ c = dot(b, a, True)
+ assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
+ c = dot(a, b, False)
assert_equal(c, np.dot(a.filled(0), b.filled(0)))
- c = dot(b,a,False)
+ c = dot(b, a, False)
assert_equal(c, np.dot(b.filled(0), a.filled(0)))
#
- m = [0,0,0,0,0,1]
- a = masked_array(n, mask=m).reshape(2,3)
- b = masked_array(n, mask=m).reshape(3,2)
- c = dot(a,b,True)
- assert_equal(c.mask,[[0,1],[1,1]])
- c = dot(b,a,True)
- assert_equal(c.mask, [[0,0,1],[0,0,1],[1,1,1]])
- c = dot(a,b,False)
+ m = [0, 0, 0, 0, 0, 1]
+ a = masked_array(n, mask=m).reshape(2, 3)
+ b = masked_array(n, mask=m).reshape(3, 2)
+ c = dot(a, b, True)
+ assert_equal(c.mask, [[0, 1], [1, 1]])
+ c = dot(b, a, True)
+ assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]])
+ c = dot(a, b, False)
assert_equal(c, np.dot(a.filled(0), b.filled(0)))
- assert_equal(c, dot(a,b))
- c = dot(b,a,False)
+ assert_equal(c, dot(a, b))
+ c = dot(b, a, False)
assert_equal(c, np.dot(b.filled(0), a.filled(0)))
#
- m = [0,0,0,0,0,0]
- a = masked_array(n, mask=m).reshape(2,3)
- b = masked_array(n, mask=m).reshape(3,2)
- c = dot(a,b)
- assert_equal(c.mask,nomask)
- c = dot(b,a)
- assert_equal(c.mask,nomask)
- #
- a = masked_array(n, mask=[1,0,0,0,0,0]).reshape(2,3)
- b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2)
- c = dot(a,b,True)
- assert_equal(c.mask,[[1,1],[0,0]])
- c = dot(a,b,False)
- assert_equal(c, np.dot(a.filled(0),b.filled(0)))
- c = dot(b,a,True)
- assert_equal(c.mask,[[1,0,0],[1,0,0],[1,0,0]])
- c = dot(b,a,False)
- assert_equal(c, np.dot(b.filled(0),a.filled(0)))
- #
- a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3)
- b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2)
- c = dot(a,b,True)
- assert_equal(c.mask,[[0,0],[1,1]])
- c = dot(a,b)
- assert_equal(c, np.dot(a.filled(0),b.filled(0)))
- c = dot(b,a,True)
- assert_equal(c.mask,[[0,0,1],[0,0,1],[0,0,1]])
- c = dot(b,a,False)
+ m = [0, 0, 0, 0, 0, 0]
+ a = masked_array(n, mask=m).reshape(2, 3)
+ b = masked_array(n, mask=m).reshape(3, 2)
+ c = dot(a, b)
+ assert_equal(c.mask, nomask)
+ c = dot(b, a)
+ assert_equal(c.mask, nomask)
+ #
+ a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3)
+ b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
+ c = dot(a, b, True)
+ assert_equal(c.mask, [[1, 1], [0, 0]])
+ c = dot(a, b, False)
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+ c = dot(b, a, True)
+ assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
+ c = dot(b, a, False)
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
+ #
+ a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
+ b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
+ c = dot(a, b, True)
+ assert_equal(c.mask, [[0, 0], [1, 1]])
+ c = dot(a, b)
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+ c = dot(b, a, True)
+ assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]])
+ c = dot(b, a, False)
assert_equal(c, np.dot(b.filled(0), a.filled(0)))
#
- a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3)
- b = masked_array(n, mask=[0,0,1,0,0,0]).reshape(3,2)
- c = dot(a,b,True)
- assert_equal(c.mask,[[1,0],[1,1]])
- c = dot(a,b,False)
- assert_equal(c, np.dot(a.filled(0),b.filled(0)))
- c = dot(b,a,True)
- assert_equal(c.mask,[[0,0,1],[1,1,1],[0,0,1]])
- c = dot(b,a,False)
- assert_equal(c, np.dot(b.filled(0),a.filled(0)))
+ a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
+ b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2)
+ c = dot(a, b, True)
+ assert_equal(c.mask, [[1, 0], [1, 1]])
+ c = dot(a, b, False)
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+ c = dot(b, a, True)
+ assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]])
+ c = dot(b, a, False)
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
@@ -398,51 +398,63 @@ class TestApplyAlongAxis(TestCase):
#
"Tests 2D functions"
def test_3d(self):
- a = arange(12.).reshape(2,2,3)
+ a = arange(12.).reshape(2, 2, 3)
def myfunc(b):
return b[1]
- xa = apply_along_axis(myfunc,2,a)
- assert_equal(xa,[[1,4],[7,10]])
+ xa = apply_along_axis(myfunc, 2, a)
+ assert_equal(xa, [[1, 4], [7, 10]])
+
+class TestApplyOverAxes(TestCase):
+ "Tests apply_over_axes"
+ def test_basic(self):
+ a = arange(24).reshape(2, 3, 4)
+ test = apply_over_axes(np.sum, a, [0, 2])
+ ctrl = np.array([[[ 60], [ 92], [124]]])
+ assert_equal(test, ctrl)
+ a[(a % 2).astype(np.bool)] = masked
+ test = apply_over_axes(np.sum, a, [0, 2])
+ ctrl = np.array([[[ 30], [ 44], [60]]])
+
class TestMedian(TestCase):
#
def test_2d(self):
"Tests median w/ 2D"
- (n,p) = (101,30)
- x = masked_array(np.linspace(-1.,1.,n),)
+ (n, p) = (101, 30)
+ x = masked_array(np.linspace(-1., 1., n),)
x[:10] = x[-10:] = masked
- z = masked_array(np.empty((n,p), dtype=float))
- z[:,0] = x[:]
+ z = masked_array(np.empty((n, p), dtype=float))
+ z[:, 0] = x[:]
idx = np.arange(len(x))
- for i in range(1,p):
+ for i in range(1, p):
np.random.shuffle(idx)
- z[:,i] = x[idx]
- assert_equal(median(z[:,0]), 0)
+ z[:, i] = x[idx]
+ assert_equal(median(z[:, 0]), 0)
assert_equal(median(z), 0)
assert_equal(median(z, axis=0), np.zeros(p))
assert_equal(median(z.T, axis=1), np.zeros(p))
#
def test_2d_waxis(self):
"Tests median w/ 2D arrays and different axis."
- x = masked_array(np.arange(30).reshape(10,3))
+ x = masked_array(np.arange(30).reshape(10, 3))
x[:3] = x[-3:] = masked
assert_equal(median(x), 14.5)
- assert_equal(median(x, axis=0), [13.5,14.5,15.5])
- assert_equal(median(x,axis=1), [0,0,0,10,13,16,19,0,0,0])
- assert_equal(median(x,axis=1).mask, [1,1,1,0,0,0,0,1,1,1])
+ assert_equal(median(x, axis=0), [13.5, 14.5, 15.5])
+ assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0])
+ assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1])
#
def test_3d(self):
"Tests median w/ 3D"
- x = np.ma.arange(24).reshape(3,4,2)
- x[x%3==0] = masked
- assert_equal(median(x,0), [[12,9],[6,15],[12,9],[18,15]])
- x.shape = (4,3,2)
- assert_equal(median(x,0),[[99,10],[11,99],[13,14]])
- x = np.ma.arange(24).reshape(4,3,2)
- x[x%5==0] = masked
- assert_equal(median(x,0), [[12,10],[8,9],[16,17]])
+ x = np.ma.arange(24).reshape(3, 4, 2)
+ x[x % 3 == 0] = masked
+ assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]])
+ x.shape = (4, 3, 2)
+ assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]])
+ x = np.ma.arange(24).reshape(4, 3, 2)
+ x[x % 5 == 0] = masked
+ assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]])
@@ -461,7 +473,7 @@ class TestCov(TestCase):
def test_2d_wo_missing(self):
"Test cov on 1 2D variable w/o missing values"
- x = self.data.reshape(3,4)
+ x = self.data.reshape(3, 4)
assert_almost_equal(np.cov(x), cov(x))
assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
assert_almost_equal(np.cov(x, rowvar=False, bias=True),
@@ -495,19 +507,19 @@ class TestCov(TestCase):
"Test cov on 2D variable w/ missing value"
x = self.data
x[-1] = masked
- x = x.reshape(3,4)
+ x = x.reshape(3, 4)
valid = np.logical_not(getmaskarray(x)).astype(int)
frac = np.dot(valid, valid.T)
- xf = (x - x.mean(1)[:,None]).filled(0)
- assert_almost_equal(cov(x), np.cov(xf) * (x.shape[1]-1) / (frac - 1.))
+ xf = (x - x.mean(1)[:, None]).filled(0)
+ assert_almost_equal(cov(x), np.cov(xf) * (x.shape[1] - 1) / (frac - 1.))
assert_almost_equal(cov(x, bias=True),
np.cov(xf, bias=True) * x.shape[1] / frac)
frac = np.dot(valid.T, valid)
xf = (x - x.mean(0)).filled(0)
assert_almost_equal(cov(x, rowvar=False),
- np.cov(xf, rowvar=False) * (x.shape[0]-1)/(frac - 1.))
+ np.cov(xf, rowvar=False) * (x.shape[0] - 1) / (frac - 1.))
assert_almost_equal(cov(x, rowvar=False, bias=True),
- np.cov(xf, rowvar=False, bias=True) * x.shape[0]/frac)
+ np.cov(xf, rowvar=False, bias=True) * x.shape[0] / frac)
@@ -527,7 +539,7 @@ class TestCorrcoef(TestCase):
def test_2d_wo_missing(self):
"Test corrcoef on 1 2D variable w/o missing values"
- x = self.data.reshape(3,4)
+ x = self.data.reshape(3, 4)
assert_almost_equal(np.corrcoef(x), corrcoef(x))
assert_almost_equal(np.corrcoef(x, rowvar=False),
corrcoef(x, rowvar=False))
@@ -562,11 +574,11 @@ class TestCorrcoef(TestCase):
"Test corrcoef on 2D variable w/ missing value"
x = self.data
x[-1] = masked
- x = x.reshape(3,4)
+ x = x.reshape(3, 4)
test = corrcoef(x)
control = np.corrcoef(x)
- assert_almost_equal(test[:-1,:-1], control[:-1,:-1])
+ assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
@@ -576,27 +588,27 @@ class TestPolynomial(TestCase):
"Tests polyfit"
# On ndarrays
x = np.random.rand(10)
- y = np.random.rand(20).reshape(-1,2)
- assert_almost_equal(polyfit(x,y,3),np.polyfit(x,y,3))
+ y = np.random.rand(20).reshape(-1, 2)
+ assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3))
# ON 1D maskedarrays
x = x.view(MaskedArray)
x[0] = masked
y = y.view(MaskedArray)
- y[0,0] = y[-1,-1] = masked
+ y[0, 0] = y[-1, -1] = masked
#
- (C,R,K,S,D) = polyfit(x,y[:,0],3,full=True)
- (c,r,k,s,d) = np.polyfit(x[1:], y[1:,0].compressed(), 3, full=True)
- for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)):
+ (C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True)
+ (c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3, full=True)
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
assert_almost_equal(a, a_)
#
- (C,R,K,S,D) = polyfit(x,y[:,-1],3,full=True)
- (c,r,k,s,d) = np.polyfit(x[1:-1], y[1:-1,-1], 3, full=True)
- for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)):
+ (C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True)
+ (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True)
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
assert_almost_equal(a, a_)
#
- (C,R,K,S,D) = polyfit(x,y,3,full=True)
- (c,r,k,s,d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True)
- for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)):
+ (C, R, K, S, D) = polyfit(x, y, 3, full=True)
+ (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, :], 3, full=True)
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
assert_almost_equal(a, a_)
@@ -632,7 +644,7 @@ class TestArraySetOps(TestCase):
"Test all masked"
data = masked_array([1, 1, 1], mask=True)
test = unique(data, return_index=True, return_inverse=True)
- assert_equal(test[0], masked_array([1,], mask=[True]))
+ assert_equal(test[0], masked_array([1, ], mask=[True]))
assert_equal(test[1], [0])
assert_equal(test[2], [0, 0, 0])
#
@@ -642,10 +654,10 @@ class TestArraySetOps(TestCase):
assert_equal(test[0], masked_array(masked))
assert_equal(test[1], [0])
assert_equal(test[2], [0])
-
+
def test_ediff1d(self):
"Tests mediff1d"
- x = masked_array(np.arange(5), mask=[1,0,0,0,1])
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
control = array([1, 1, 1, 4], mask=[1, 0, 0, 1])
test = ediff1d(x)
assert_equal(test, control)
@@ -654,14 +666,14 @@ class TestArraySetOps(TestCase):
#
def test_ediff1d_tobegin(self):
"Test ediff1d w/ to_begin"
- x = masked_array(np.arange(5), mask=[1,0,0,0,1])
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
test = ediff1d(x, to_begin=masked)
control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
#
- test = ediff1d(x, to_begin=[1,2,3])
+ test = ediff1d(x, to_begin=[1, 2, 3])
control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1])
assert_equal(test, control)
assert_equal(test.data, control.data)
@@ -669,14 +681,14 @@ class TestArraySetOps(TestCase):
#
def test_ediff1d_toend(self):
"Test ediff1d w/ to_end"
- x = masked_array(np.arange(5), mask=[1,0,0,0,1])
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
test = ediff1d(x, to_end=masked)
control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
#
- test = ediff1d(x, to_end=[1,2,3])
+ test = ediff1d(x, to_end=[1, 2, 3])
control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0])
assert_equal(test, control)
assert_equal(test.data, control.data)
@@ -684,14 +696,14 @@ class TestArraySetOps(TestCase):
#
def test_ediff1d_tobegin_toend(self):
"Test ediff1d w/ to_begin and to_end"
- x = masked_array(np.arange(5), mask=[1,0,0,0,1])
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
test = ediff1d(x, to_end=masked, to_begin=masked)
control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
#
- test = ediff1d(x, to_end=[1,2,3], to_begin=masked)
+ test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked)
control = array([0, 1, 1, 1, 4, 1, 2, 3], mask=[1, 1, 0, 0, 1, 0, 0, 0])
assert_equal(test, control)
assert_equal(test.data, control.data)
@@ -735,8 +747,8 @@ class TestArraySetOps(TestCase):
test = setxor1d(a, b)
assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1]))
#
- a = array( [1, 2, 3] )
- b = array( [6, 5, 4] )
+ a = array([1, 2, 3])
+ b = array([6, 5, 4])
test = setxor1d(a, b)
assert(isinstance(test, MaskedArray))
assert_equal(test, [1, 2, 3, 4, 5, 6])
@@ -747,10 +759,10 @@ class TestArraySetOps(TestCase):
assert(isinstance(test, MaskedArray))
assert_equal(test, [1, 2, 3, 4, 5, 6])
#
- assert_array_equal([], setxor1d([],[]))
+ assert_array_equal([], setxor1d([], []))
- def test_in1d( self ):
+ def test_in1d(self):
"Test in1d"
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
@@ -762,10 +774,10 @@ class TestArraySetOps(TestCase):
test = in1d(a, b)
assert_equal(test, [True, True, False, True, True])
#
- assert_array_equal([], in1d([],[]))
+ assert_array_equal([], in1d([], []))
- def test_union1d( self ):
+ def test_union1d(self):
"Test union1d"
a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1])
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
@@ -773,10 +785,10 @@ class TestArraySetOps(TestCase):
control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1])
assert_equal(test, control)
#
- assert_array_equal([], union1d([],[]))
+ assert_array_equal([], union1d([], []))
- def test_setdiff1d( self ):
+ def test_setdiff1d(self):
"Test setdiff1d"
a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1])
b = array([2, 4, 3, 3, 2, 1, 5])
@@ -790,9 +802,9 @@ class TestArraySetOps(TestCase):
def test_setdiff1d_char_array(self):
"Test setdiff1d_charray"
- a = np.array(['a','b','c'])
- b = np.array(['a','b','s'])
- assert_array_equal(setdiff1d(a,b), np.array(['c']))
+ a = np.array(['a', 'b', 'c'])
+ b = np.array(['a', 'b', 's'])
+ assert_array_equal(setdiff1d(a, b), np.array(['c']))
class TestShapeBase(TestCase):