summaryrefslogtreecommitdiff
path: root/numpy/matrixlib/defmatrix.py
diff options
context:
space:
mode:
authorMarten van Kerkwijk <mhvk@astro.utoronto.ca>2018-04-27 10:05:45 -0400
committerMarten van Kerkwijk <mhvk@astro.utoronto.ca>2018-04-29 11:18:15 -0400
commite3eeec78a902cb2fcbf67d8c4e1ffc6141ed68f3 (patch)
tree2eb92fb595eb7da020bd26ec069e51f665305909 /numpy/matrixlib/defmatrix.py
parentf3c3a969ff6c3f596d30137a90d87c745cc42497 (diff)
downloadnumpy-e3eeec78a902cb2fcbf67d8c4e1ffc6141ed68f3.tar.gz
MAINT: Move matrix_power to linalg
The docstring already assumed it was in linalg, and this ensures linalg becomes completely independent of matrixlib.
Diffstat (limited to 'numpy/matrixlib/defmatrix.py')
-rw-r--r--numpy/matrixlib/defmatrix.py115
1 files changed, 5 insertions, 110 deletions
diff --git a/numpy/matrixlib/defmatrix.py b/numpy/matrixlib/defmatrix.py
index 1f5c94921..9909fec8d 100644
--- a/numpy/matrixlib/defmatrix.py
+++ b/numpy/matrixlib/defmatrix.py
@@ -5,8 +5,11 @@ __all__ = ['matrix', 'bmat', 'mat', 'asmatrix']
import sys
import ast
import numpy.core.numeric as N
-from numpy.core.numeric import concatenate, isscalar, binary_repr, identity, asanyarray
-from numpy.core.numerictypes import issubdtype
+from numpy.core.numeric import concatenate, isscalar
+# While not in __all__, matrix_power used to be defined here, so we import
+# it for backward compatibility.
+from numpy.linalg import matrix_power
+
def _convert_from_string(data):
for char in '[]':
@@ -63,114 +66,6 @@ def asmatrix(data, dtype=None):
"""
return matrix(data, dtype=dtype, copy=False)
-def matrix_power(M, n):
- """
- Raise a square matrix to the (integer) power `n`.
-
- For positive integers `n`, the power is computed by repeated matrix
- squarings and matrix multiplications. If ``n == 0``, the identity matrix
- of the same shape as M is returned. If ``n < 0``, the inverse
- is computed and then raised to the ``abs(n)``.
-
- Parameters
- ----------
- M : ndarray or matrix object
- Matrix to be "powered." Must be square, i.e. ``M.shape == (m, m)``,
- with `m` a positive integer.
- n : int
- The exponent can be any integer or long integer, positive,
- negative, or zero.
-
- Returns
- -------
- M**n : ndarray or matrix object
- The return value is the same shape and type as `M`;
- if the exponent is positive or zero then the type of the
- elements is the same as those of `M`. If the exponent is
- negative the elements are floating-point.
-
- Raises
- ------
- LinAlgError
- If the matrix is not numerically invertible.
-
- See Also
- --------
- matrix
- Provides an equivalent function as the exponentiation operator
- (``**``, not ``^``).
-
- Examples
- --------
- >>> from numpy import linalg as LA
- >>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
- >>> LA.matrix_power(i, 3) # should = -i
- array([[ 0, -1],
- [ 1, 0]])
- >>> LA.matrix_power(np.matrix(i), 3) # matrix arg returns matrix
- matrix([[ 0, -1],
- [ 1, 0]])
- >>> LA.matrix_power(i, 0)
- array([[1, 0],
- [0, 1]])
- >>> LA.matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
- array([[ 0., 1.],
- [-1., 0.]])
-
- Somewhat more sophisticated example
-
- >>> q = np.zeros((4, 4))
- >>> q[0:2, 0:2] = -i
- >>> q[2:4, 2:4] = i
- >>> q # one of the three quaternion units not equal to 1
- array([[ 0., -1., 0., 0.],
- [ 1., 0., 0., 0.],
- [ 0., 0., 0., 1.],
- [ 0., 0., -1., 0.]])
- >>> LA.matrix_power(q, 2) # = -np.eye(4)
- array([[-1., 0., 0., 0.],
- [ 0., -1., 0., 0.],
- [ 0., 0., -1., 0.],
- [ 0., 0., 0., -1.]])
-
- """
- M = asanyarray(M)
- if M.ndim != 2 or M.shape[0] != M.shape[1]:
- raise ValueError("input must be a square array")
- if not issubdtype(type(n), N.integer):
- raise TypeError("exponent must be an integer")
-
- from numpy.linalg import inv
-
- if n==0:
- M = M.copy()
- M[:] = identity(M.shape[0])
- return M
- elif n<0:
- M = inv(M)
- n *= -1
-
- result = M
- if n <= 3:
- for _ in range(n-1):
- result=N.dot(result, M)
- return result
-
- # binary decomposition to reduce the number of Matrix
- # multiplications for n > 3.
- beta = binary_repr(n)
- Z, q, t = M, 0, len(beta)
- while beta[t-q-1] == '0':
- Z = N.dot(Z, Z)
- q += 1
- result = Z
- for k in range(q+1, t):
- Z = N.dot(Z, Z)
- if beta[t-k-1] == '1':
- result = N.dot(result, Z)
- return result
-
-
class matrix(N.ndarray):
"""
matrix(data, dtype=None, copy=True)