summaryrefslogtreecommitdiff
path: root/numpy/matrixlib/tests/test_interaction.py
diff options
context:
space:
mode:
authorMarten van Kerkwijk <mhvk@astro.utoronto.ca>2018-04-29 17:13:49 -0400
committerMarten van Kerkwijk <mhvk@astro.utoronto.ca>2018-04-29 17:37:57 -0400
commit1394d0a723832d22ca749e402975786c7707fe02 (patch)
treedea061c4936c36c797567e018f12270d071be69a /numpy/matrixlib/tests/test_interaction.py
parentd7e0c7e34b293ab32a46960c65d063446115d4e8 (diff)
downloadnumpy-1394d0a723832d22ca749e402975786c7707fe02.tar.gz
MAINT: move matrix tests in lib to matrixlib.
Diffstat (limited to 'numpy/matrixlib/tests/test_interaction.py')
-rw-r--r--numpy/matrixlib/tests/test_interaction.py172
1 files changed, 169 insertions, 3 deletions
diff --git a/numpy/matrixlib/tests/test_interaction.py b/numpy/matrixlib/tests/test_interaction.py
index 9b515b620..e6135eb18 100644
--- a/numpy/matrixlib/tests/test_interaction.py
+++ b/numpy/matrixlib/tests/test_interaction.py
@@ -4,9 +4,12 @@ Note that tests with MaskedArray and linalg are done in separate files.
"""
from __future__ import division, absolute_import, print_function
+import warnings
+
import numpy as np
from numpy.testing import (assert_, assert_equal, assert_raises,
- assert_raises_regex)
+ assert_raises_regex, assert_array_equal,
+ assert_almost_equal)
def test_fancy_indexing():
@@ -30,7 +33,7 @@ def test_polynomial_mapdomain():
dom1 = [0, 4]
dom2 = [1, 3]
x = np.matrix([dom1, dom1])
- res = np.polynomial.mapdomain(x, dom1, dom2)
+ res = np.polynomial.polyutils.mapdomain(x, dom1, dom2)
assert_(isinstance(res, np.matrix))
@@ -72,7 +75,7 @@ def test_inner_scalar_and_matrix():
assert_equal(np.inner(sca, arr), desired)
-def test_inner_scalar_and_matrix_of_objects(self):
+def test_inner_scalar_and_matrix_of_objects():
# Ticket #4482
# 2018-04-29: moved here from core.tests.test_multiarray
arr = np.matrix([1, 2], dtype=object)
@@ -153,3 +156,166 @@ def test_object_scalar_multiply():
desired = np.matrix([[3, 6]], dtype=object)
assert_equal(np.multiply(arr, 3), desired)
assert_equal(np.multiply(3, arr), desired)
+
+
+def test_nanfunctions_matrices():
+ # Check that it works and that type and
+ # shape are preserved
+ # 2018-04-29: moved here from core.tests.test_nanfunctions
+ mat = np.matrix(np.eye(3))
+ for f in [np.nanmin, np.nanmax]:
+ res = f(mat, axis=0)
+ assert_(isinstance(res, np.matrix))
+ assert_(res.shape == (1, 3))
+ res = f(mat, axis=1)
+ assert_(isinstance(res, np.matrix))
+ assert_(res.shape == (3, 1))
+ res = f(mat)
+ assert_(np.isscalar(res))
+ # check that rows of nan are dealt with for subclasses (#4628)
+ mat[1] = np.nan
+ for f in [np.nanmin, np.nanmax]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ res = f(mat, axis=0)
+ assert_(isinstance(res, np.matrix))
+ assert_(not np.any(np.isnan(res)))
+ assert_(len(w) == 0)
+
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ res = f(mat, axis=1)
+ assert_(isinstance(res, np.matrix))
+ assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
+ and not np.isnan(res[2, 0]))
+ assert_(len(w) == 1, 'no warning raised')
+ assert_(issubclass(w[0].category, RuntimeWarning))
+
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ res = f(mat)
+ assert_(np.isscalar(res))
+ assert_(res != np.nan)
+ assert_(len(w) == 0)
+
+
+def test_nanfunctions_matrices_general():
+ # Check that it works and that type and
+ # shape are preserved
+ # 2018-04-29: moved here from core.tests.test_nanfunctions
+ mat = np.matrix(np.eye(3))
+ for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod,
+ np.nanmean, np.nanvar, np.nanstd):
+ res = f(mat, axis=0)
+ assert_(isinstance(res, np.matrix))
+ assert_(res.shape == (1, 3))
+ res = f(mat, axis=1)
+ assert_(isinstance(res, np.matrix))
+ assert_(res.shape == (3, 1))
+ res = f(mat)
+ assert_(np.isscalar(res))
+
+ for f in np.nancumsum, np.nancumprod:
+ res = f(mat, axis=0)
+ assert_(isinstance(res, np.matrix))
+ assert_(res.shape == (3, 3))
+ res = f(mat, axis=1)
+ assert_(isinstance(res, np.matrix))
+ assert_(res.shape == (3, 3))
+ res = f(mat)
+ assert_(isinstance(res, np.matrix))
+ assert_(res.shape == (1, 3*3))
+
+
+def test_average_matrix():
+ # 2018-04-29: moved here from core.tests.test_function_base.
+ y = np.matrix(np.random.rand(5, 5))
+ assert_array_equal(y.mean(0), np.average(y, 0))
+
+ a = np.matrix([[1, 2], [3, 4]])
+ w = np.matrix([[1, 2], [3, 4]])
+
+ r = np.average(a, axis=0, weights=w)
+ assert_equal(type(r), np.matrix)
+ assert_equal(r, [[2.5, 10.0/3]])
+
+
+def test_trapz_matrix():
+ # Test to make sure matrices give the same answer as ndarrays
+ # 2018-04-29: moved here from core.tests.test_function_base.
+ x = np.linspace(0, 5)
+ y = x * x
+ r = np.trapz(y, x)
+ mx = np.matrix(x)
+ my = np.matrix(y)
+ mr = np.trapz(my, mx)
+ assert_almost_equal(mr, r)
+
+
+def test_ediff1d_matrix():
+ # 2018-04-29: moved here from core.tests.test_arraysetops.
+ assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix))
+ assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix))
+
+
+def test_apply_along_axis_matrix():
+ # this test is particularly malicious because matrix
+ # refuses to become 1d
+ # 2018-04-29: moved here from core.tests.test_shape_base.
+ def double(row):
+ return row * 2
+
+ m = np.matrix([[0, 1], [2, 3]])
+ expected = np.matrix([[0, 2], [4, 6]])
+
+ result = np.apply_along_axis(double, 0, m)
+ assert_(isinstance(result, np.matrix))
+ assert_array_equal(result, expected)
+
+ result = np.apply_along_axis(double, 1, m)
+ assert_(isinstance(result, np.matrix))
+ assert_array_equal(result, expected)
+
+
+def test_kron_matrix():
+ # 2018-04-29: moved here from core.tests.test_shape_base.
+ a = np.ones([2, 2])
+ m = np.asmatrix(a)
+ assert_equal(type(np.kron(a, a)), np.ndarray)
+ assert_equal(type(np.kron(m, m)), np.matrix)
+ assert_equal(type(np.kron(a, m)), np.matrix)
+ assert_equal(type(np.kron(m, a)), np.matrix)
+
+
+class TestConcatenatorMatrix(object):
+ # 2018-04-29: moved here from core.tests.test_index_tricks.
+ def test_matrix(self):
+ a = [1, 2]
+ b = [3, 4]
+
+ ab_r = np.r_['r', a, b]
+ ab_c = np.r_['c', a, b]
+
+ assert_equal(type(ab_r), np.matrix)
+ assert_equal(type(ab_c), np.matrix)
+
+ assert_equal(np.array(ab_r), [[1, 2, 3, 4]])
+ assert_equal(np.array(ab_c), [[1], [2], [3], [4]])
+
+ assert_raises(ValueError, lambda: np.r_['rc', a, b])
+
+ def test_matrix_scalar(self):
+ r = np.r_['r', [1, 2], 3]
+ assert_equal(type(r), np.matrix)
+ assert_equal(np.array(r), [[1, 2, 3]])
+
+ def test_matrix_builder(self):
+ a = np.array([1])
+ b = np.array([2])
+ c = np.array([3])
+ d = np.array([4])
+ actual = np.r_['a, b; c, d']
+ expected = np.bmat([[a, b], [c, d]])
+
+ assert_equal(actual, expected)
+ assert_equal(type(actual), type(expected))