summaryrefslogtreecommitdiff
path: root/numpy/matrixlib/tests/test_regression.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2017-08-05 18:17:23 -0600
committerCharles Harris <charlesr.harris@gmail.com>2017-08-05 19:01:08 -0600
commit6a2bc5e3548ff8e3b1fcd1a6d7a4ee263c17aa0b (patch)
treebd669d444c6a225e00cba33d03a6626e9e28f4d1 /numpy/matrixlib/tests/test_regression.py
parentbfe43b26969231cfe8196868280c07f0c0aa8f50 (diff)
downloadnumpy-6a2bc5e3548ff8e3b1fcd1a6d7a4ee263c17aa0b.tar.gz
MAINT: Remove `level=` keyword from test arguments.
I don't know what that argument was used for, but it showis up in old tests and is not explicitly used within the tests. I assume it was part of an old testing framework and is now longer needed.
Diffstat (limited to 'numpy/matrixlib/tests/test_regression.py')
-rw-r--r--numpy/matrixlib/tests/test_regression.py9
1 files changed, 4 insertions, 5 deletions
diff --git a/numpy/matrixlib/tests/test_regression.py b/numpy/matrixlib/tests/test_regression.py
index b681374f2..32cb38ac7 100644
--- a/numpy/matrixlib/tests/test_regression.py
+++ b/numpy/matrixlib/tests/test_regression.py
@@ -5,15 +5,14 @@ from numpy.testing import (
run_module_suite, assert_, assert_equal, assert_raises
)
-rlevel = 1
class TestRegression(object):
- def test_kron_matrix(self, level=rlevel):
+ def test_kron_matrix(self):
# Ticket #71
x = np.matrix('[1 0; 1 0]')
assert_equal(type(np.kron(x, x)), type(x))
- def test_matrix_properties(self,level=rlevel):
+ def test_matrix_properties(self):
# Ticket #125
a = np.matrix([1.0], dtype=float)
assert_(type(a.real) is np.matrix)
@@ -22,14 +21,14 @@ class TestRegression(object):
assert_(type(c) is np.ndarray)
assert_(type(d) is np.ndarray)
- def test_matrix_multiply_by_1d_vector(self, level=rlevel):
+ def test_matrix_multiply_by_1d_vector(self):
# Ticket #473
def mul():
np.mat(np.eye(2))*np.ones(2)
assert_raises(ValueError, mul)
- def test_matrix_std_argmax(self,level=rlevel):
+ def test_matrix_std_argmax(self):
# Ticket #83
x = np.asmatrix(np.random.uniform(0, 1, (3, 3)))
assert_equal(x.std().shape, ())