diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2018-05-15 11:13:46 -0600 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-05-15 11:13:46 -0600 |
commit | 79ec65de3064cbdc687820ab09f20b989028509d (patch) | |
tree | d1db3a47f86b4377738b433fc663a9ceef81597e /numpy/matrixlib/tests | |
parent | 9584c2f8ed78194ec18d20aea9616d4a89ee74fa (diff) | |
parent | 8e74c991d1336bd51e71dc492544223055c130f4 (diff) | |
download | numpy-79ec65de3064cbdc687820ab09f20b989028509d.tar.gz |
Merge pull request #11010 from mhvk/poly-matrix-tests-to-matrixlib
Move remaining Matrix tests to matrixlib
Diffstat (limited to 'numpy/matrixlib/tests')
-rw-r--r-- | numpy/matrixlib/tests/test_interaction.py | 361 |
1 files changed, 361 insertions, 0 deletions
diff --git a/numpy/matrixlib/tests/test_interaction.py b/numpy/matrixlib/tests/test_interaction.py new file mode 100644 index 000000000..fefb159c6 --- /dev/null +++ b/numpy/matrixlib/tests/test_interaction.py @@ -0,0 +1,361 @@ +"""Tests of interaction of matrix with other parts of numpy. + +Note that tests with MaskedArray and linalg are done in separate files. +""" +from __future__ import division, absolute_import, print_function + +import textwrap +import warnings + +import numpy as np +from numpy.testing import (assert_, assert_equal, assert_raises, + assert_raises_regex, assert_array_equal, + assert_almost_equal, assert_array_almost_equal) + + +def test_fancy_indexing(): + # The matrix class messes with the shape. While this is always + # weird (getitem is not used, it does not have setitem nor knows + # about fancy indexing), this tests gh-3110 + # 2018-04-29: moved here from core.tests.test_index. + m = np.matrix([[1, 2], [3, 4]]) + + assert_(isinstance(m[[0, 1, 0], :], np.matrix)) + + # gh-3110. Note the transpose currently because matrices do *not* + # support dimension fixing for fancy indexing correctly. + x = np.asmatrix(np.arange(50).reshape(5, 10)) + assert_equal(x[:2, np.array(-1)], x[:2, -1].T) + + +def test_polynomial_mapdomain(): + # test that polynomial preserved matrix subtype. + # 2018-04-29: moved here from polynomial.tests.polyutils. + dom1 = [0, 4] + dom2 = [1, 3] + x = np.matrix([dom1, dom1]) + res = np.polynomial.polyutils.mapdomain(x, dom1, dom2) + assert_(isinstance(res, np.matrix)) + + +def test_sort_matrix_none(): + # 2018-04-29: moved here from core.tests.test_multiarray + a = np.matrix([[2, 1, 0]]) + actual = np.sort(a, axis=None) + expected = np.matrix([[0, 1, 2]]) + assert_equal(actual, expected) + assert_(type(expected) is np.matrix) + + +def test_partition_matrix_none(): + # gh-4301 + # 2018-04-29: moved here from core.tests.test_multiarray + a = np.matrix([[2, 1, 0]]) + actual = np.partition(a, 1, axis=None) + expected = np.matrix([[0, 1, 2]]) + assert_equal(actual, expected) + assert_(type(expected) is np.matrix) + + +def test_dot_scalar_and_matrix_of_objects(): + # Ticket #2469 + # 2018-04-29: moved here from core.tests.test_multiarray + arr = np.matrix([1, 2], dtype=object) + desired = np.matrix([[3, 6]], dtype=object) + assert_equal(np.dot(arr, 3), desired) + assert_equal(np.dot(3, arr), desired) + + +def test_inner_scalar_and_matrix(): + # 2018-04-29: moved here from core.tests.test_multiarray + for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': + sca = np.array(3, dtype=dt)[()] + arr = np.matrix([[1, 2], [3, 4]], dtype=dt) + desired = np.matrix([[3, 6], [9, 12]], dtype=dt) + assert_equal(np.inner(arr, sca), desired) + assert_equal(np.inner(sca, arr), desired) + + +def test_inner_scalar_and_matrix_of_objects(): + # Ticket #4482 + # 2018-04-29: moved here from core.tests.test_multiarray + arr = np.matrix([1, 2], dtype=object) + desired = np.matrix([[3, 6]], dtype=object) + assert_equal(np.inner(arr, 3), desired) + assert_equal(np.inner(3, arr), desired) + + +def test_iter_allocate_output_subtype(): + # Make sure that the subtype with priority wins + # 2018-04-29: moved here from core.tests.test_nditer, given the + # matrix specific shape test. + + # matrix vs ndarray + a = np.matrix([[1, 2], [3, 4]]) + b = np.arange(4).reshape(2, 2).T + i = np.nditer([a, b, None], [], + [['readonly'], ['readonly'], ['writeonly', 'allocate']]) + assert_(type(i.operands[2]) is np.matrix) + assert_(type(i.operands[2]) is not np.ndarray) + assert_equal(i.operands[2].shape, (2, 2)) + + # matrix always wants things to be 2D + b = np.arange(4).reshape(1, 2, 2) + assert_raises(RuntimeError, np.nditer, [a, b, None], [], + [['readonly'], ['readonly'], ['writeonly', 'allocate']]) + # but if subtypes are disabled, the result can still work + i = np.nditer([a, b, None], [], + [['readonly'], ['readonly'], + ['writeonly', 'allocate', 'no_subtype']]) + assert_(type(i.operands[2]) is np.ndarray) + assert_(type(i.operands[2]) is not np.matrix) + assert_equal(i.operands[2].shape, (1, 2, 2)) + + +def like_function(): + # 2018-04-29: moved here from core.tests.test_numeric + a = np.matrix([[1, 2], [3, 4]]) + for like_function in np.zeros_like, np.ones_like, np.empty_like: + b = like_function(a) + assert_(type(b) is np.matrix) + + c = like_function(a, subok=False) + assert_(type(c) is not np.matrix) + + +def test_array_astype(): + # 2018-04-29: copied here from core.tests.test_api + # subok=True passes through a matrix + a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4') + b = a.astype('f4', subok=True, copy=False) + assert_(a is b) + + # subok=True is default, and creates a subtype on a cast + b = a.astype('i4', copy=False) + assert_equal(a, b) + assert_equal(type(b), np.matrix) + + # subok=False never returns a matrix + b = a.astype('f4', subok=False, copy=False) + assert_equal(a, b) + assert_(not (a is b)) + assert_(type(b) is not np.matrix) + + +def test_stack(): + # 2018-04-29: copied here from core.tests.test_shape_base + # check np.matrix cannot be stacked + m = np.matrix([[1, 2], [3, 4]]) + assert_raises_regex(ValueError, 'shape too large to be a matrix', + np.stack, [m, m]) + + +def test_object_scalar_multiply(): + # Tickets #2469 and #4482 + # 2018-04-29: moved here from core.tests.test_ufunc + arr = np.matrix([1, 2], dtype=object) + desired = np.matrix([[3, 6]], dtype=object) + assert_equal(np.multiply(arr, 3), desired) + assert_equal(np.multiply(3, arr), desired) + + +def test_nanfunctions_matrices(): + # Check that it works and that type and + # shape are preserved + # 2018-04-29: moved here from core.tests.test_nanfunctions + mat = np.matrix(np.eye(3)) + for f in [np.nanmin, np.nanmax]: + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (1, 3)) + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 1)) + res = f(mat) + assert_(np.isscalar(res)) + # check that rows of nan are dealt with for subclasses (#4628) + mat[1] = np.nan + for f in [np.nanmin, np.nanmax]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(not np.any(np.isnan(res))) + assert_(len(w) == 0) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0]) + and not np.isnan(res[2, 0])) + assert_(len(w) == 1, 'no warning raised') + assert_(issubclass(w[0].category, RuntimeWarning)) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mat) + assert_(np.isscalar(res)) + assert_(res != np.nan) + assert_(len(w) == 0) + + +def test_nanfunctions_matrices_general(): + # Check that it works and that type and + # shape are preserved + # 2018-04-29: moved here from core.tests.test_nanfunctions + mat = np.matrix(np.eye(3)) + for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod, + np.nanmean, np.nanvar, np.nanstd): + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (1, 3)) + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 1)) + res = f(mat) + assert_(np.isscalar(res)) + + for f in np.nancumsum, np.nancumprod: + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 3)) + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 3)) + res = f(mat) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (1, 3*3)) + + +def test_average_matrix(): + # 2018-04-29: moved here from core.tests.test_function_base. + y = np.matrix(np.random.rand(5, 5)) + assert_array_equal(y.mean(0), np.average(y, 0)) + + a = np.matrix([[1, 2], [3, 4]]) + w = np.matrix([[1, 2], [3, 4]]) + + r = np.average(a, axis=0, weights=w) + assert_equal(type(r), np.matrix) + assert_equal(r, [[2.5, 10.0/3]]) + + +def test_trapz_matrix(): + # Test to make sure matrices give the same answer as ndarrays + # 2018-04-29: moved here from core.tests.test_function_base. + x = np.linspace(0, 5) + y = x * x + r = np.trapz(y, x) + mx = np.matrix(x) + my = np.matrix(y) + mr = np.trapz(my, mx) + assert_almost_equal(mr, r) + + +def test_ediff1d_matrix(): + # 2018-04-29: moved here from core.tests.test_arraysetops. + assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix)) + assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix)) + + +def test_apply_along_axis_matrix(): + # this test is particularly malicious because matrix + # refuses to become 1d + # 2018-04-29: moved here from core.tests.test_shape_base. + def double(row): + return row * 2 + + m = np.matrix([[0, 1], [2, 3]]) + expected = np.matrix([[0, 2], [4, 6]]) + + result = np.apply_along_axis(double, 0, m) + assert_(isinstance(result, np.matrix)) + assert_array_equal(result, expected) + + result = np.apply_along_axis(double, 1, m) + assert_(isinstance(result, np.matrix)) + assert_array_equal(result, expected) + + +def test_kron_matrix(): + # 2018-04-29: moved here from core.tests.test_shape_base. + a = np.ones([2, 2]) + m = np.asmatrix(a) + assert_equal(type(np.kron(a, a)), np.ndarray) + assert_equal(type(np.kron(m, m)), np.matrix) + assert_equal(type(np.kron(a, m)), np.matrix) + assert_equal(type(np.kron(m, a)), np.matrix) + + +class TestConcatenatorMatrix(object): + # 2018-04-29: moved here from core.tests.test_index_tricks. + def test_matrix(self): + a = [1, 2] + b = [3, 4] + + ab_r = np.r_['r', a, b] + ab_c = np.r_['c', a, b] + + assert_equal(type(ab_r), np.matrix) + assert_equal(type(ab_c), np.matrix) + + assert_equal(np.array(ab_r), [[1, 2, 3, 4]]) + assert_equal(np.array(ab_c), [[1], [2], [3], [4]]) + + assert_raises(ValueError, lambda: np.r_['rc', a, b]) + + def test_matrix_scalar(self): + r = np.r_['r', [1, 2], 3] + assert_equal(type(r), np.matrix) + assert_equal(np.array(r), [[1, 2, 3]]) + + def test_matrix_builder(self): + a = np.array([1]) + b = np.array([2]) + c = np.array([3]) + d = np.array([4]) + actual = np.r_['a, b; c, d'] + expected = np.bmat([[a, b], [c, d]]) + + assert_equal(actual, expected) + assert_equal(type(actual), type(expected)) + + +def test_array_equal_error_message_matrix(): + # 2018-04-29: moved here from testing.tests.test_utils. + try: + assert_equal(np.array([1, 2]), np.matrix([1, 2])) + except AssertionError as e: + msg = str(e) + msg2 = msg.replace("shapes (2L,), (1L, 2L)", "shapes (2,), (1, 2)") + msg_reference = textwrap.dedent("""\ + + Arrays are not equal + + (shapes (2,), (1, 2) mismatch) + x: array([1, 2]) + y: matrix([[1, 2]])""") + try: + assert_equal(msg, msg_reference) + except AssertionError: + assert_equal(msg2, msg_reference) + else: + raise AssertionError("Did not raise") + + +def test_array_almost_equal_matrix(): + # Matrix slicing keeps things 2-D, while array does not necessarily. + # See gh-8452. + # 2018-04-29: moved here from testing.tests.test_utils. + m1 = np.matrix([[1., 2.]]) + m2 = np.matrix([[1., np.nan]]) + m3 = np.matrix([[1., -np.inf]]) + m4 = np.matrix([[np.nan, np.inf]]) + m5 = np.matrix([[1., 2.], [np.nan, np.inf]]) + for assert_func in assert_array_almost_equal, assert_almost_equal: + for m in m1, m2, m3, m4, m5: + assert_func(m, m) + a = np.array(m) + assert_func(a, m) + assert_func(m, a) |