summaryrefslogtreecommitdiff
path: root/numpy/oldnumeric
diff options
context:
space:
mode:
authorJarrod Millman <millman@berkeley.edu>2007-10-29 14:58:18 +0000
committerJarrod Millman <millman@berkeley.edu>2007-10-29 14:58:18 +0000
commit0b77f0e5f0e46b2ef7c570ebda046c34bbcc0f26 (patch)
treec7609a2a685fd5bff235d812b8c5705621216f4c /numpy/oldnumeric
parentaa3c27cce3d0625f719b812c9e6b0aa73114c612 (diff)
downloadnumpy-0b77f0e5f0e46b2ef7c570ebda046c34bbcc0f26.tar.gz
ran reindent.py to clean up whitespace
Diffstat (limited to 'numpy/oldnumeric')
-rw-r--r--numpy/oldnumeric/arrayfns.py2
-rw-r--r--numpy/oldnumeric/ma.py1
-rw-r--r--numpy/oldnumeric/random_array.py6
3 files changed, 3 insertions, 6 deletions
diff --git a/numpy/oldnumeric/arrayfns.py b/numpy/oldnumeric/arrayfns.py
index e80246a57..4c31a6827 100644
--- a/numpy/oldnumeric/arrayfns.py
+++ b/numpy/oldnumeric/arrayfns.py
@@ -94,5 +94,3 @@ def to_corners(arr, nv, nvsum):
def construct3(mask, itype):
raise NotImplementedError
-
-
diff --git a/numpy/oldnumeric/ma.py b/numpy/oldnumeric/ma.py
index 857c554ec..601ff88af 100644
--- a/numpy/oldnumeric/ma.py
+++ b/numpy/oldnumeric/ma.py
@@ -12,4 +12,3 @@ def average(a, axis=0, weights=None, returned=0):
def take(a, indices, axis=0):
return nca.average(a, indices, axis=0)
-
diff --git a/numpy/oldnumeric/random_array.py b/numpy/oldnumeric/random_array.py
index 94c54603f..73564811d 100644
--- a/numpy/oldnumeric/random_array.py
+++ b/numpy/oldnumeric/random_array.py
@@ -81,13 +81,13 @@ def multivariate_normal(mean, cov, shape=[]):
"""multivariate_normal(mean, cov) or multivariate_normal(mean, cov, [m, n, ...])
returns an array containing multivariate normally distributed random numbers
with specified mean and covariance.
-
+
mean must be a 1 dimensional array. cov must be a square two dimensional
array with the same number of rows and columns as mean has elements.
-
+
The first form returns a single 1-D array containing a multivariate
normal.
-
+
The second form returns an array of shape (m, n, ..., cov.shape[0]).
In this case, output[i,j,...,:] is a 1-D array containing a multivariate
normal."""