summaryrefslogtreecommitdiff
path: root/numpy/oldnumeric
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2013-08-18 18:40:28 -0600
committerCharles Harris <charlesr.harris@gmail.com>2013-09-23 15:11:12 -0600
commit3beebbc0164afbbcc2b6840cf56174c6c073bb40 (patch)
tree5eece25d48cd246d78a94e3fcda8c565b6d78258 /numpy/oldnumeric
parent2a1705f4932f446c67074e46bd5fa9098920122d (diff)
downloadnumpy-3beebbc0164afbbcc2b6840cf56174c6c073bb40.tar.gz
DEP: Remove deprecated modules numarray and oldnumeric.
They were deprecated in 1.8 and scheduled for removal in 1.9. Closes #3637.
Diffstat (limited to 'numpy/oldnumeric')
-rw-r--r--numpy/oldnumeric/__init__.py55
-rw-r--r--numpy/oldnumeric/alter_code1.py243
-rw-r--r--numpy/oldnumeric/alter_code2.py148
-rw-r--r--numpy/oldnumeric/array_printer.py17
-rw-r--r--numpy/oldnumeric/arrayfns.py99
-rw-r--r--numpy/oldnumeric/compat.py121
-rw-r--r--numpy/oldnumeric/fft.py22
-rw-r--r--numpy/oldnumeric/fix_default_axis.py294
-rw-r--r--numpy/oldnumeric/functions.py127
-rw-r--r--numpy/oldnumeric/linear_algebra.py85
-rw-r--r--numpy/oldnumeric/ma.py2296
-rw-r--r--numpy/oldnumeric/matrix.py70
-rw-r--r--numpy/oldnumeric/misc.py37
-rw-r--r--numpy/oldnumeric/mlab.py128
-rw-r--r--numpy/oldnumeric/precision.py174
-rw-r--r--numpy/oldnumeric/random_array.py269
-rw-r--r--numpy/oldnumeric/rng.py137
-rw-r--r--numpy/oldnumeric/rng_stats.py36
-rw-r--r--numpy/oldnumeric/setup.py11
-rw-r--r--numpy/oldnumeric/tests/test_oldnumeric.py96
-rw-r--r--numpy/oldnumeric/tests/test_regression.py11
-rw-r--r--numpy/oldnumeric/typeconv.py62
-rw-r--r--numpy/oldnumeric/ufuncs.py21
-rw-r--r--numpy/oldnumeric/user_array.py9
24 files changed, 0 insertions, 4568 deletions
diff --git a/numpy/oldnumeric/__init__.py b/numpy/oldnumeric/__init__.py
deleted file mode 100644
index 86cdf55f7..000000000
--- a/numpy/oldnumeric/__init__.py
+++ /dev/null
@@ -1,55 +0,0 @@
-"""Don't add these to the __all__ variable though
-
-"""
-from __future__ import division, absolute_import, print_function
-
-import warnings
-
-from numpy import *
-
-_msg = "The oldnumeric module will be dropped in Numpy 1.9"
-warnings.warn(_msg, ModuleDeprecationWarning)
-
-
-def _move_axis_to_0(a, axis):
- if axis == 0:
- return a
- n = len(a.shape)
- if axis < 0:
- axis += n
- axes = list(range(1, axis+1)) + [0,] + list(range(axis+1, n))
- return transpose(a, axes)
-
-# Add these
-from .compat import *
-from .functions import *
-from .precision import *
-from .ufuncs import *
-from .misc import *
-
-from . import compat
-from . import precision
-from . import functions
-from . import misc
-from . import ufuncs
-
-import numpy
-__version__ = numpy.__version__
-del numpy
-
-__all__ = ['__version__']
-__all__ += compat.__all__
-__all__ += precision.__all__
-__all__ += functions.__all__
-__all__ += ufuncs.__all__
-__all__ += misc.__all__
-
-del compat
-del functions
-del precision
-del ufuncs
-del misc
-
-from numpy.testing import Tester
-test = Tester().test
-bench = Tester().bench
diff --git a/numpy/oldnumeric/alter_code1.py b/numpy/oldnumeric/alter_code1.py
deleted file mode 100644
index 2d4e17106..000000000
--- a/numpy/oldnumeric/alter_code1.py
+++ /dev/null
@@ -1,243 +0,0 @@
-"""
-This module converts code written for Numeric to run with numpy
-
-Makes the following changes:
- * Changes import statements (warns of use of from Numeric import *)
- * Changes import statements (using numerix) ...
- * Makes search and replace changes to:
- - .typecode()
- - .iscontiguous()
- - .byteswapped()
- - .itemsize()
- - .toscalar()
- * Converts .flat to .ravel() except for .flat = xxx or .flat[xxx]
- * Replace xxx.spacesaver() with True
- * Convert xx.savespace(?) to pass + ## xx.savespace(?)
-
- * Converts uses of 'b' to 'B' in the typecode-position of
- functions:
- eye, tri (in position 4)
- ones, zeros, identity, empty, array, asarray, arange,
- fromstring, indices, array_constructor (in position 2)
-
- and methods:
- astype --- only argument
- -- converts uses of '1', 's', 'w', and 'u' to
- -- 'b', 'h', 'H', and 'I'
-
- * Converts uses of type(...) is <type>
- isinstance(..., <type>)
-
-"""
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['convertfile', 'convertall', 'converttree', 'convertsrc']
-
-import sys
-import os
-import re
-import glob
-
-
-_func4 = ['eye', 'tri']
-_meth1 = ['astype']
-_func2 = ['ones', 'zeros', 'identity', 'fromstring', 'indices',
- 'empty', 'array', 'asarray', 'arange', 'array_constructor']
-
-_chars = {'1':'b','s':'h','w':'H','u':'I'}
-
-func_re = {}
-meth_re = {}
-
-for name in _func2:
- _astr = r"""(%s\s*[(][^,]*?[,][^'"]*?['"])b(['"][^)]*?[)])"""%name
- func_re[name] = re.compile(_astr, re.DOTALL)
-
-for name in _func4:
- _astr = r"""(%s\s*[(][^,]*?[,][^,]*?[,][^,]*?[,][^'"]*?['"])b(['"][^)]*?[)])"""%name
- func_re[name] = re.compile(_astr, re.DOTALL)
-
-for name in _meth1:
- _astr = r"""(.%s\s*[(][^'"]*?['"])b(['"][^)]*?[)])"""%name
- func_re[name] = re.compile(_astr, re.DOTALL)
-
-for char in _chars.keys():
- _astr = r"""(.astype\s*[(][^'"]*?['"])%s(['"][^)]*?[)])"""%char
- meth_re[char] = re.compile(_astr, re.DOTALL)
-
-def fixtypechars(fstr):
- for name in _func2 + _func4 + _meth1:
- fstr = func_re[name].sub('\\1B\\2', fstr)
- for char in _chars.keys():
- fstr = meth_re[char].sub('\\1%s\\2'%_chars[char], fstr)
- return fstr
-
-flatindex_re = re.compile('([.]flat(\s*?[[=]))')
-
-def changeimports(fstr, name, newname):
- importstr = 'import %s' % name
- importasstr = 'import %s as ' % name
- fromstr = 'from %s import ' % name
- fromall=0
-
- fstr = re.sub(r'(import\s+[^,\n\r]+,\s*)(%s)' % name,
- "\\1%s as %s" % (newname, name), fstr)
- fstr = fstr.replace(importasstr, 'import %s as ' % newname)
- fstr = fstr.replace(importstr, 'import %s as %s' % (newname, name))
-
- ind = 0
- Nlen = len(fromstr)
- Nlen2 = len("from %s import " % newname)
- while True:
- found = fstr.find(fromstr, ind)
- if (found < 0):
- break
- ind = found + Nlen
- if fstr[ind] == '*':
- continue
- fstr = "%sfrom %s import %s" % (fstr[:found], newname, fstr[ind:])
- ind += Nlen2 - Nlen
- return fstr, fromall
-
-istest_re = {}
-_types = ['float', 'int', 'complex', 'ArrayType', 'FloatType',
- 'IntType', 'ComplexType']
-for name in _types:
- _astr = r'type\s*[(]([^)]*)[)]\s+(?:is|==)\s+(.*?%s)'%name
- istest_re[name] = re.compile(_astr)
-def fixistesting(astr):
- for name in _types:
- astr = istest_re[name].sub('isinstance(\\1, \\2)', astr)
- return astr
-
-def replaceattr(astr):
- astr = astr.replace(".typecode()", ".dtype.char")
- astr = astr.replace(".iscontiguous()", ".flags.contiguous")
- astr = astr.replace(".byteswapped()", ".byteswap()")
- astr = astr.replace(".toscalar()", ".item()")
- astr = astr.replace(".itemsize()", ".itemsize")
- # preserve uses of flat that should be o.k.
- tmpstr = flatindex_re.sub(r"@@@@\2", astr)
- # replace other uses of flat
- tmpstr = tmpstr.replace(".flat", ".ravel()")
- # put back .flat where it was valid
- astr = tmpstr.replace("@@@@", ".flat")
- return astr
-
-svspc2 = re.compile(r'([^,(\s]+[.]spacesaver[(][)])')
-svspc3 = re.compile(r'(\S+[.]savespace[(].*[)])')
-#shpe = re.compile(r'(\S+\s*)[.]shape\s*=[^=]\s*(.+)')
-def replaceother(astr):
- astr = svspc2.sub('True', astr)
- astr = svspc3.sub(r'pass ## \1', astr)
- #astr = shpe.sub('\\1=\\1.reshape(\\2)', astr)
- return astr
-
-import datetime
-def fromstr(filestr):
- savestr = filestr[:]
- filestr = fixtypechars(filestr)
- filestr = fixistesting(filestr)
- filestr, fromall1 = changeimports(filestr, 'Numeric', 'numpy.oldnumeric')
- filestr, fromall1 = changeimports(filestr, 'multiarray', 'numpy.oldnumeric')
- filestr, fromall1 = changeimports(filestr, 'umath', 'numpy.oldnumeric')
- filestr, fromall1 = changeimports(filestr, 'Precision', 'numpy.oldnumeric.precision')
- filestr, fromall1 = changeimports(filestr, 'UserArray', 'numpy.oldnumeric.user_array')
- filestr, fromall1 = changeimports(filestr, 'ArrayPrinter', 'numpy.oldnumeric.array_printer')
- filestr, fromall2 = changeimports(filestr, 'numerix', 'numpy.oldnumeric')
- filestr, fromall3 = changeimports(filestr, 'scipy_base', 'numpy.oldnumeric')
- filestr, fromall3 = changeimports(filestr, 'Matrix', 'numpy.oldnumeric.matrix')
- filestr, fromall3 = changeimports(filestr, 'MLab', 'numpy.oldnumeric.mlab')
- filestr, fromall3 = changeimports(filestr, 'LinearAlgebra', 'numpy.oldnumeric.linear_algebra')
- filestr, fromall3 = changeimports(filestr, 'RNG', 'numpy.oldnumeric.rng')
- filestr, fromall3 = changeimports(filestr, 'RNG.Statistics', 'numpy.oldnumeric.rng_stats')
- filestr, fromall3 = changeimports(filestr, 'RandomArray', 'numpy.oldnumeric.random_array')
- filestr, fromall3 = changeimports(filestr, 'FFT', 'numpy.oldnumeric.fft')
- filestr, fromall3 = changeimports(filestr, 'MA', 'numpy.oldnumeric.ma')
- fromall = fromall1 or fromall2 or fromall3
- filestr = replaceattr(filestr)
- filestr = replaceother(filestr)
- if savestr != filestr:
- today = datetime.date.today().strftime('%b %d, %Y')
- name = os.path.split(sys.argv[0])[-1]
- filestr = '## Automatically adapted for '\
- 'numpy.oldnumeric %s by %s\n\n%s' % (today, name, filestr)
- return filestr, 1
- return filestr, 0
-
-def makenewfile(name, filestr):
- fid = file(name, 'w')
- fid.write(filestr)
- fid.close()
-
-def convertfile(filename, orig=1):
- """Convert the filename given from using Numeric to using NumPy
-
- Copies the file to filename.orig and then over-writes the file
- with the updated code
- """
- fid = open(filename)
- filestr = fid.read()
- fid.close()
- filestr, changed = fromstr(filestr)
- if changed:
- if orig:
- base, ext = os.path.splitext(filename)
- os.rename(filename, base+".orig")
- else:
- os.remove(filename)
- makenewfile(filename, filestr)
-
-def fromargs(args):
- filename = args[1]
- converttree(filename)
-
-def convertall(direc=os.path.curdir, orig=1):
- """Convert all .py files to use numpy.oldnumeric (from Numeric) in the directory given
-
- For each changed file, a backup of <usesnumeric>.py is made as
- <usesnumeric>.py.orig. A new file named <usesnumeric>.py
- is then written with the updated code.
- """
- files = glob.glob(os.path.join(direc, '*.py'))
- for afile in files:
- if afile[-8:] == 'setup.py': continue # skip these
- convertfile(afile, orig)
-
-header_re = re.compile(r'(Numeric/arrayobject.h)')
-
-def convertsrc(direc=os.path.curdir, ext=None, orig=1):
- """Replace Numeric/arrayobject.h with numpy/oldnumeric.h in all files in the
- directory with extension give by list ext (if ext is None, then all files are
- replaced)."""
- if ext is None:
- files = glob.glob(os.path.join(direc, '*'))
- else:
- files = []
- for aext in ext:
- files.extend(glob.glob(os.path.join(direc, "*.%s" % aext)))
- for afile in files:
- fid = open(afile)
- fstr = fid.read()
- fid.close()
- fstr, n = header_re.subn(r'numpy/oldnumeric.h', fstr)
- if n > 0:
- if orig:
- base, ext = os.path.splitext(afile)
- os.rename(afile, base+".orig")
- else:
- os.remove(afile)
- makenewfile(afile, fstr)
-
-def _func(arg, dirname, fnames):
- convertall(dirname, orig=0)
- convertsrc(dirname, ext=['h', 'c'], orig=0)
-
-def converttree(direc=os.path.curdir):
- """Convert all .py files and source code files in the tree given
- """
- os.path.walk(direc, _func, None)
-
-
-if __name__ == '__main__':
- fromargs(sys.argv)
diff --git a/numpy/oldnumeric/alter_code2.py b/numpy/oldnumeric/alter_code2.py
deleted file mode 100644
index 1ec15c855..000000000
--- a/numpy/oldnumeric/alter_code2.py
+++ /dev/null
@@ -1,148 +0,0 @@
-"""
-This module converts code written for numpy.oldnumeric to work
-with numpy
-
-FIXME: Flesh this out.
-
-Makes the following changes:
- * Converts typecharacters '1swu' to 'bhHI' respectively
- when used as typecodes
- * Changes import statements
- * Change typecode= to dtype=
- * Eliminates savespace=xxx keyword arguments
- * Removes it when keyword is not given as well
- * replaces matrixmultiply with dot
- * converts functions that don't give axis= keyword that have changed
- * converts functions that don't give typecode= keyword that have changed
- * converts use of capitalized type-names
- * converts old function names in oldnumeric.linear_algebra,
- oldnumeric.random_array, and oldnumeric.fft
-
-"""
-from __future__ import division, absolute_import, print_function
-
-#__all__ = ['convertfile', 'convertall', 'converttree']
-__all__ = []
-
-import warnings
-warnings.warn("numpy.oldnumeric.alter_code2 is not working yet.")
-
-import sys
-import os
-import re
-import glob
-
-# To convert typecharacters we need to
-# Not very safe. Disabled for now..
-def replacetypechars(astr):
- astr = astr.replace("'s'", "'h'")
- astr = astr.replace("'b'", "'B'")
- astr = astr.replace("'1'", "'b'")
- astr = astr.replace("'w'", "'H'")
- astr = astr.replace("'u'", "'I'")
- return astr
-
-def changeimports(fstr, name, newname):
- importstr = 'import %s' % name
- importasstr = 'import %s as ' % name
- fromstr = 'from %s import ' % name
- fromall=0
-
- fstr = fstr.replace(importasstr, 'import %s as ' % newname)
- fstr = fstr.replace(importstr, 'import %s as %s' % (newname, name))
-
- ind = 0
- Nlen = len(fromstr)
- Nlen2 = len("from %s import " % newname)
- while True:
- found = fstr.find(fromstr, ind)
- if (found < 0):
- break
- ind = found + Nlen
- if fstr[ind] == '*':
- continue
- fstr = "%sfrom %s import %s" % (fstr[:found], newname, fstr[ind:])
- ind += Nlen2 - Nlen
- return fstr, fromall
-
-def replaceattr(astr):
- astr = astr.replace("matrixmultiply", "dot")
- return astr
-
-def replaceother(astr):
- astr = re.sub(r'typecode\s*=', 'dtype=', astr)
- astr = astr.replace('ArrayType', 'ndarray')
- astr = astr.replace('NewAxis', 'newaxis')
- return astr
-
-import datetime
-def fromstr(filestr):
- #filestr = replacetypechars(filestr)
- filestr, fromall1 = changeimports(filestr, 'numpy.oldnumeric', 'numpy')
- filestr, fromall1 = changeimports(filestr, 'numpy.core.multiarray', 'numpy')
- filestr, fromall1 = changeimports(filestr, 'numpy.core.umath', 'numpy')
- filestr, fromall3 = changeimports(filestr, 'LinearAlgebra',
- 'numpy.linalg.old')
- filestr, fromall3 = changeimports(filestr, 'RNG', 'numpy.random.oldrng')
- filestr, fromall3 = changeimports(filestr, 'RNG.Statistics', 'numpy.random.oldrngstats')
- filestr, fromall3 = changeimports(filestr, 'RandomArray', 'numpy.random.oldrandomarray')
- filestr, fromall3 = changeimports(filestr, 'FFT', 'numpy.fft.old')
- filestr, fromall3 = changeimports(filestr, 'MA', 'numpy.core.ma')
- fromall = fromall1 or fromall2 or fromall3
- filestr = replaceattr(filestr)
- filestr = replaceother(filestr)
- today = datetime.date.today().strftime('%b %d, %Y')
- name = os.path.split(sys.argv[0])[-1]
- filestr = '## Automatically adapted for '\
- 'numpy %s by %s\n\n%s' % (today, name, filestr)
- return filestr
-
-def makenewfile(name, filestr):
- fid = file(name, 'w')
- fid.write(filestr)
- fid.close()
-
-def getandcopy(name):
- fid = file(name)
- filestr = fid.read()
- fid.close()
- base, ext = os.path.splitext(name)
- makenewfile(base+'.orig', filestr)
- return filestr
-
-def convertfile(filename):
- """Convert the filename given from using Numeric to using NumPy
-
- Copies the file to filename.orig and then over-writes the file
- with the updated code
- """
- filestr = getandcopy(filename)
- filestr = fromstr(filestr)
- makenewfile(filename, filestr)
-
-def fromargs(args):
- filename = args[1]
- convertfile(filename)
-
-def convertall(direc=os.path.curdir):
- """Convert all .py files to use NumPy (from Numeric) in the directory given
-
- For each file, a backup of <usesnumeric>.py is made as
- <usesnumeric>.py.orig. A new file named <usesnumeric>.py
- is then written with the updated code.
- """
- files = glob.glob(os.path.join(direc, '*.py'))
- for afile in files:
- convertfile(afile)
-
-def _func(arg, dirname, fnames):
- convertall(dirname)
-
-def converttree(direc=os.path.curdir):
- """Convert all .py files in the tree given
-
- """
- os.path.walk(direc, _func, None)
-
-if __name__ == '__main__':
- fromargs(sys.argv)
diff --git a/numpy/oldnumeric/array_printer.py b/numpy/oldnumeric/array_printer.py
deleted file mode 100644
index 9cccc5023..000000000
--- a/numpy/oldnumeric/array_printer.py
+++ /dev/null
@@ -1,17 +0,0 @@
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['array2string']
-
-from numpy import array2string as _array2string
-
-def array2string(a, max_line_width=None, precision=None,
- suppress_small=None, separator=' ',
- array_output=0):
- if array_output:
- prefix="array("
- style=repr
- else:
- prefix = ""
- style=str
- return _array2string(a, max_line_width, precision,
- suppress_small, separator, prefix, style)
diff --git a/numpy/oldnumeric/arrayfns.py b/numpy/oldnumeric/arrayfns.py
deleted file mode 100644
index 0eb97ae9c..000000000
--- a/numpy/oldnumeric/arrayfns.py
+++ /dev/null
@@ -1,99 +0,0 @@
-"""Backward compatible with arrayfns from Numeric.
-
-"""
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['array_set', 'construct3', 'digitize', 'error', 'find_mask',
- 'histogram', 'index_sort', 'interp', 'nz', 'reverse', 'span',
- 'to_corners', 'zmin_zmax']
-
-import numpy as np
-from numpy import asarray
-
-class error(Exception):
- pass
-
-def array_set(vals1, indices, vals2):
- indices = asarray(indices)
- if indices.ndim != 1:
- raise ValueError("index array must be 1-d")
- if not isinstance(vals1, np.ndarray):
- raise TypeError("vals1 must be an ndarray")
- vals1 = asarray(vals1)
- vals2 = asarray(vals2)
- if vals1.ndim != vals2.ndim or vals1.ndim < 1:
- raise error("vals1 and vals2 must have same number of dimensions (>=1)")
- vals1[indices] = vals2
-
-from numpy import digitize
-from numpy import bincount as histogram
-
-def index_sort(arr):
- return asarray(arr).argsort(kind='heap')
-
-def interp(y, x, z, typ=None):
- """y(z) interpolated by treating y(x) as piecewise function
- """
- res = np.interp(z, x, y)
- if typ is None or typ == 'd':
- return res
- if typ == 'f':
- return res.astype('f')
-
- raise error("incompatible typecode")
-
-def nz(x):
- x = asarray(x, dtype=np.ubyte)
- if x.ndim != 1:
- raise TypeError("intput must have 1 dimension.")
- indxs = np.flatnonzero(x != 0)
- return indxs[-1].item()+1
-
-def reverse(x, n):
- x = asarray(x, dtype='d')
- if x.ndim != 2:
- raise ValueError("input must be 2-d")
- y = np.empty_like(x)
- if n == 0:
- y[...] = x[::-1,:]
- elif n == 1:
- y[...] = x[:, ::-1]
- return y
-
-def span(lo, hi, num, d2=0):
- x = np.linspace(lo, hi, num)
- if d2 <= 0:
- return x
- else:
- ret = np.empty((d2, num), x.dtype)
- ret[...] = x
- return ret
-
-def zmin_zmax(z, ireg):
- z = asarray(z, dtype=float)
- ireg = asarray(ireg, dtype=int)
- if z.shape != ireg.shape or z.ndim != 2:
- raise ValueError("z and ireg must be the same shape and 2-d")
- ix, iy = np.nonzero(ireg)
- # Now, add more indices
- x1m = ix - 1
- y1m = iy-1
- i1 = x1m>=0
- i2 = y1m>=0
- i3 = i1 & i2
- nix = np.r_[ix, x1m[i1], x1m[i1], ix[i2] ]
- niy = np.r_[iy, iy[i1], y1m[i3], y1m[i2]]
- # remove any negative indices
- zres = z[nix, niy]
- return zres.min().item(), zres.max().item()
-
-
-def find_mask(fs, node_edges):
- raise NotImplementedError
-
-def to_corners(arr, nv, nvsum):
- raise NotImplementedError
-
-
-def construct3(mask, itype):
- raise NotImplementedError
diff --git a/numpy/oldnumeric/compat.py b/numpy/oldnumeric/compat.py
deleted file mode 100644
index 841052656..000000000
--- a/numpy/oldnumeric/compat.py
+++ /dev/null
@@ -1,121 +0,0 @@
-"""Compatibility module containing deprecated names.
-
-"""
-from __future__ import division, absolute_import, print_function
-
-import sys
-import copy
-import pickle
-from pickle import dump, dumps
-
-import numpy.core.multiarray as multiarray
-import numpy.core.umath as um
-from numpy.core.numeric import array
-from . import functions
-
-
-__all__ = ['NewAxis',
- 'UFuncType', 'UfuncType', 'ArrayType', 'arraytype',
- 'LittleEndian', 'arrayrange', 'matrixmultiply',
- 'array_constructor', 'pickle_array',
- 'DumpArray', 'LoadArray', 'multiarray',
- # from cPickle
- 'dump', 'dumps', 'load', 'loads',
- 'Unpickler', 'Pickler'
- ]
-
-
-mu = multiarray
-
-#Use this to add a new axis to an array
-#compatibility only
-NewAxis = None
-
-#deprecated
-UFuncType = type(um.sin)
-UfuncType = type(um.sin)
-ArrayType = mu.ndarray
-arraytype = mu.ndarray
-
-LittleEndian = (sys.byteorder == 'little')
-
-from numpy import deprecate
-
-# backward compatibility
-arrayrange = deprecate(functions.arange, 'arrayrange', 'arange')
-
-# deprecated names
-matrixmultiply = deprecate(mu.dot, 'matrixmultiply', 'dot')
-
-def DumpArray(m, fp):
- m.dump(fp)
-
-def LoadArray(fp):
- return pickle.load(fp)
-
-def array_constructor(shape, typecode, thestr, Endian=LittleEndian):
- if typecode == "O":
- x = array(thestr, "O")
- else:
- x = mu.fromstring(thestr, typecode)
- x.shape = shape
- if LittleEndian != Endian:
- return x.byteswap(True)
- else:
- return x
-
-def pickle_array(a):
- if a.dtype.hasobject:
- return (array_constructor,
- a.shape, a.dtype.char, a.tolist(), LittleEndian)
- else:
- return (array_constructor,
- (a.shape, a.dtype.char, a.tostring(), LittleEndian))
-
-def loads(astr):
- arr = pickle.loads(astr.replace('Numeric', 'numpy.oldnumeric'))
- return arr
-
-def load(fp):
- return loads(fp.read())
-
-def _LoadArray(fp):
- from . import typeconv
- ln = fp.readline().split()
- if ln[0][0] == 'A': ln[0] = ln[0][1:]
- typecode = ln[0][0]
- endian = ln[0][1]
- itemsize = int(ln[0][2:])
- shape = [int(x) for x in ln[1:]]
- sz = itemsize
- for val in shape:
- sz *= val
- dstr = fp.read(sz)
- m = mu.fromstring(dstr, typeconv.convtypecode(typecode))
- m.shape = shape
-
- if (LittleEndian and endian == 'B') or (not LittleEndian and endian == 'L'):
- return m.byteswap(True)
- else:
- return m
-
-if sys.version_info[0] >= 3:
- class Unpickler(pickle.Unpickler):
- # XXX: should we implement this? It's not completely straightforward
- # to do.
- def __init__(self, *a, **kw):
- raise NotImplementedError(
- "numpy.oldnumeric.Unpickler is not supported on Python 3")
-else:
- class Unpickler(pickle.Unpickler):
- def load_array(self):
- self.stack.append(_LoadArray(self))
-
- dispatch = copy.copy(pickle.Unpickler.dispatch)
- dispatch['A'] = load_array
-
-class Pickler(pickle.Pickler):
- def __init__(self, *args, **kwds):
- raise NotImplementedError("Don't pickle new arrays with this")
- def save_array(self, object):
- raise NotImplementedError("Don't pickle new arrays with this")
diff --git a/numpy/oldnumeric/fft.py b/numpy/oldnumeric/fft.py
deleted file mode 100644
index 0fd3ae48e..000000000
--- a/numpy/oldnumeric/fft.py
+++ /dev/null
@@ -1,22 +0,0 @@
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['fft', 'fft2d', 'fftnd', 'hermite_fft', 'inverse_fft',
- 'inverse_fft2d', 'inverse_fftnd',
- 'inverse_hermite_fft', 'inverse_real_fft',
- 'inverse_real_fft2d', 'inverse_real_fftnd',
- 'real_fft', 'real_fft2d', 'real_fftnd']
-
-from numpy.fft import fft
-from numpy.fft import fft2 as fft2d
-from numpy.fft import fftn as fftnd
-from numpy.fft import hfft as hermite_fft
-from numpy.fft import ifft as inverse_fft
-from numpy.fft import ifft2 as inverse_fft2d
-from numpy.fft import ifftn as inverse_fftnd
-from numpy.fft import ihfft as inverse_hermite_fft
-from numpy.fft import irfft as inverse_real_fft
-from numpy.fft import irfft2 as inverse_real_fft2d
-from numpy.fft import irfftn as inverse_real_fftnd
-from numpy.fft import rfft as real_fft
-from numpy.fft import rfft2 as real_fft2d
-from numpy.fft import rfftn as real_fftnd
diff --git a/numpy/oldnumeric/fix_default_axis.py b/numpy/oldnumeric/fix_default_axis.py
deleted file mode 100644
index d4235a94c..000000000
--- a/numpy/oldnumeric/fix_default_axis.py
+++ /dev/null
@@ -1,294 +0,0 @@
-"""
-This module adds the default axis argument to code which did not specify it
-for the functions where the default was changed in NumPy.
-
-The functions changed are
-
-add -1 ( all second argument)
-======
-nansum
-nanmax
-nanmin
-nanargmax
-nanargmin
-argmax
-argmin
-compress 3
-
-
-add 0
-======
-take 3
-repeat 3
-sum # might cause problems with builtin.
-product
-sometrue
-alltrue
-cumsum
-cumproduct
-average
-ptp
-cumprod
-prod
-std
-mean
-
-"""
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['convertfile', 'convertall', 'converttree']
-
-import sys
-import os
-import re
-import glob
-
-
-_args3 = ['compress', 'take', 'repeat']
-_funcm1 = ['nansum', 'nanmax', 'nanmin', 'nanargmax', 'nanargmin',
- 'argmax', 'argmin', 'compress']
-_func0 = ['take', 'repeat', 'sum', 'product', 'sometrue', 'alltrue',
- 'cumsum', 'cumproduct', 'average', 'ptp', 'cumprod', 'prod',
- 'std', 'mean']
-
-_all = _func0 + _funcm1
-func_re = {}
-
-for name in _all:
- _astr = r"""%s\s*[(]"""%name
- func_re[name] = re.compile(_astr)
-
-
-import string
-disallowed = '_' + string.uppercase + string.lowercase + string.digits
-
-def _add_axis(fstr, name, repl):
- alter = 0
- if name in _args3:
- allowed_comma = 1
- else:
- allowed_comma = 0
- newcode = ""
- last = 0
- for obj in func_re[name].finditer(fstr):
- nochange = 0
- start, end = obj.span()
- if fstr[start-1] in disallowed:
- continue
- if fstr[start-1] == '.' \
- and fstr[start-6:start-1] != 'numpy' \
- and fstr[start-2:start-1] != 'N' \
- and fstr[start-9:start-1] != 'numarray' \
- and fstr[start-8:start-1] != 'numerix' \
- and fstr[start-8:start-1] != 'Numeric':
- continue
- if fstr[start-1] in ['\t', ' ']:
- k = start-2
- while fstr[k] in ['\t', ' ']:
- k -= 1
- if fstr[k-2:k+1] == 'def' or \
- fstr[k-4:k+1] == 'class':
- continue
- k = end
- stack = 1
- ncommas = 0
- N = len(fstr)
- while stack:
- if k>=N:
- nochange =1
- break
- if fstr[k] == ')':
- stack -= 1
- elif fstr[k] == '(':
- stack += 1
- elif stack == 1 and fstr[k] == ',':
- ncommas += 1
- if ncommas > allowed_comma:
- nochange = 1
- break
- k += 1
- if nochange:
- continue
- alter += 1
- newcode = "%s%s,%s)" % (newcode, fstr[last:k-1], repl)
- last = k
- if not alter:
- newcode = fstr
- else:
- newcode = "%s%s" % (newcode, fstr[last:])
- return newcode, alter
-
-def _import_change(fstr, names):
- # Four possibilities
- # 1.) import numpy with subsequent use of numpy.<name>
- # change this to import numpy.oldnumeric as numpy
- # 2.) import numpy as XXXX with subsequent use of
- # XXXX.<name> ==> import numpy.oldnumeric as XXXX
- # 3.) from numpy import *
- # with subsequent use of one of the names
- # 4.) from numpy import ..., <name>, ... (could span multiple
- # lines. ==> remove all names from list and
- # add from numpy.oldnumeric import <name>
-
- num = 0
- # case 1
- importstr = "import numpy"
- ind = fstr.find(importstr)
- if (ind > 0):
- found = 0
- for name in names:
- ind2 = fstr.find("numpy.%s" % name, ind)
- if (ind2 > 0):
- found = 1
- break
- if found:
- fstr = "%s%s%s" % (fstr[:ind], "import numpy.oldnumeric as numpy",
- fstr[ind+len(importstr):])
- num += 1
-
- # case 2
- importre = re.compile("""import numpy as ([A-Za-z0-9_]+)""")
- modules = importre.findall(fstr)
- if len(modules) > 0:
- for module in modules:
- found = 0
- for name in names:
- ind2 = fstr.find("%s.%s" % (module, name))
- if (ind2 > 0):
- found = 1
- break
- if found:
- importstr = "import numpy as %s" % module
- ind = fstr.find(importstr)
- fstr = "%s%s%s" % (fstr[:ind],
- "import numpy.oldnumeric as %s" % module,
- fstr[ind+len(importstr):])
- num += 1
-
- # case 3
- importstr = "from numpy import *"
- ind = fstr.find(importstr)
- if (ind > 0):
- found = 0
- for name in names:
- ind2 = fstr.find(name, ind)
- if (ind2 > 0) and fstr[ind2-1] not in disallowed:
- found = 1
- break
- if found:
- fstr = "%s%s%s" % (fstr[:ind],
- "from numpy.oldnumeric import *",
- fstr[ind+len(importstr):])
- num += 1
-
- # case 4
- ind = 0
- importstr = "from numpy import"
- N = len(importstr)
- while True:
- ind = fstr.find(importstr, ind)
- if (ind < 0):
- break
- ind += N
- ptr = ind+1
- stack = 1
- while stack:
- if fstr[ptr] == '\\':
- stack += 1
- elif fstr[ptr] == '\n':
- stack -= 1
- ptr += 1
- substr = fstr[ind:ptr]
- found = 0
- substr = substr.replace('\n', ' ')
- substr = substr.replace('\\', '')
- importnames = [x.strip() for x in substr.split(',')]
- # determine if any of names are in importnames
- addnames = []
- for name in names:
- if name in importnames:
- importnames.remove(name)
- addnames.append(name)
- if len(addnames) > 0:
- fstr = "%s%s\n%s\n%s" % \
- (fstr[:ind],
- "from numpy import %s" % \
- ", ".join(importnames),
- "from numpy.oldnumeric import %s" % \
- ", ".join(addnames),
- fstr[ptr:])
- num += 1
-
- return fstr, num
-
-def add_axis(fstr, import_change=False):
- total = 0
- if not import_change:
- for name in _funcm1:
- fstr, num = _add_axis(fstr, name, 'axis=-1')
- total += num
- for name in _func0:
- fstr, num = _add_axis(fstr, name, 'axis=0')
- total += num
- return fstr, total
- else:
- fstr, num = _import_change(fstr, _funcm1+_func0)
- return fstr, num
-
-
-def makenewfile(name, filestr):
- fid = file(name, 'w')
- fid.write(filestr)
- fid.close()
-
-def getfile(name):
- fid = file(name)
- filestr = fid.read()
- fid.close()
- return filestr
-
-def copyfile(name, fstr):
- base, ext = os.path.splitext(name)
- makenewfile(base+'.orig', fstr)
- return
-
-def convertfile(filename, import_change=False):
- """Convert the filename given from using Numeric to using NumPy
-
- Copies the file to filename.orig and then over-writes the file
- with the updated code
- """
- filestr = getfile(filename)
- newstr, total = add_axis(filestr, import_change)
- if total > 0:
- print("Changing ", filename)
- copyfile(filename, filestr)
- makenewfile(filename, newstr)
- sys.stdout.flush()
-
-def fromargs(args):
- filename = args[1]
- convertfile(filename)
-
-def convertall(direc=os.path.curdir, import_change=False):
- """Convert all .py files in the directory given
-
- For each file, a backup of <usesnumeric>.py is made as
- <usesnumeric>.py.orig. A new file named <usesnumeric>.py
- is then written with the updated code.
- """
- files = glob.glob(os.path.join(direc, '*.py'))
- for afile in files:
- convertfile(afile, import_change)
-
-def _func(arg, dirname, fnames):
- convertall(dirname, import_change=arg)
-
-def converttree(direc=os.path.curdir, import_change=False):
- """Convert all .py files in the tree given
-
- """
- os.path.walk(direc, _func, import_change)
-
-if __name__ == '__main__':
- fromargs(sys.argv)
diff --git a/numpy/oldnumeric/functions.py b/numpy/oldnumeric/functions.py
deleted file mode 100644
index 156a09a43..000000000
--- a/numpy/oldnumeric/functions.py
+++ /dev/null
@@ -1,127 +0,0 @@
-"""Functions that should behave the same as Numeric and need changing
-
-"""
-from __future__ import division, absolute_import, print_function
-
-import numpy as np
-import numpy.core.multiarray as mu
-import numpy.core.numeric as nn
-from .typeconv import convtypecode, convtypecode2
-
-__all__ = ['take', 'repeat', 'sum', 'product', 'sometrue', 'alltrue',
- 'cumsum', 'cumproduct', 'compress', 'fromfunction',
- 'ones', 'empty', 'identity', 'zeros', 'array', 'asarray',
- 'nonzero', 'reshape', 'arange', 'fromstring', 'ravel', 'trace',
- 'indices', 'where', 'sarray', 'cross_product', 'argmax', 'argmin',
- 'average']
-
-def take(a, indicies, axis=0):
- return np.take(a, indicies, axis)
-
-def repeat(a, repeats, axis=0):
- return np.repeat(a, repeats, axis)
-
-def sum(x, axis=0):
- return np.sum(x, axis)
-
-def product(x, axis=0):
- return np.product(x, axis)
-
-def sometrue(x, axis=0):
- return np.sometrue(x, axis)
-
-def alltrue(x, axis=0):
- return np.alltrue(x, axis)
-
-def cumsum(x, axis=0):
- return np.cumsum(x, axis)
-
-def cumproduct(x, axis=0):
- return np.cumproduct(x, axis)
-
-def argmax(x, axis=-1):
- return np.argmax(x, axis)
-
-def argmin(x, axis=-1):
- return np.argmin(x, axis)
-
-def compress(condition, m, axis=-1):
- return np.compress(condition, m, axis)
-
-def fromfunction(args, dimensions):
- return np.fromfunction(args, dimensions, dtype=int)
-
-def ones(shape, typecode='l', savespace=0, dtype=None):
- """ones(shape, dtype=int) returns an array of the given
- dimensions which is initialized to all ones.
- """
- dtype = convtypecode(typecode, dtype)
- a = mu.empty(shape, dtype)
- a.fill(1)
- return a
-
-def zeros(shape, typecode='l', savespace=0, dtype=None):
- """zeros(shape, dtype=int) returns an array of the given
- dimensions which is initialized to all zeros
- """
- dtype = convtypecode(typecode, dtype)
- return mu.zeros(shape, dtype)
-
-def identity(n,typecode='l', dtype=None):
- """identity(n) returns the identity 2-d array of shape n x n.
- """
- dtype = convtypecode(typecode, dtype)
- return nn.identity(n, dtype)
-
-def empty(shape, typecode='l', dtype=None):
- dtype = convtypecode(typecode, dtype)
- return mu.empty(shape, dtype)
-
-def array(sequence, typecode=None, copy=1, savespace=0, dtype=None):
- dtype = convtypecode2(typecode, dtype)
- return mu.array(sequence, dtype, copy=copy)
-
-def sarray(a, typecode=None, copy=False, dtype=None):
- dtype = convtypecode2(typecode, dtype)
- return mu.array(a, dtype, copy)
-
-def asarray(a, typecode=None, dtype=None):
- dtype = convtypecode2(typecode, dtype)
- return mu.array(a, dtype, copy=0)
-
-def nonzero(a):
- res = np.nonzero(a)
- if len(res) == 1:
- return res[0]
- else:
- raise ValueError("Input argument must be 1d")
-
-def reshape(a, shape):
- return np.reshape(a, shape)
-
-def arange(start, stop=None, step=1, typecode=None, dtype=None):
- dtype = convtypecode2(typecode, dtype)
- return mu.arange(start, stop, step, dtype)
-
-def fromstring(string, typecode='l', count=-1, dtype=None):
- dtype = convtypecode(typecode, dtype)
- return mu.fromstring(string, dtype, count=count)
-
-def ravel(m):
- return np.ravel(m)
-
-def trace(a, offset=0, axis1=0, axis2=1):
- return np.trace(a, offset=0, axis1=0, axis2=1)
-
-def indices(dimensions, typecode=None, dtype=None):
- dtype = convtypecode(typecode, dtype)
- return np.indices(dimensions, dtype)
-
-def where(condition, x, y):
- return np.where(condition, x, y)
-
-def cross_product(a, b, axis1=-1, axis2=-1):
- return np.cross(a, b, axis1, axis2)
-
-def average(a, axis=0, weights=None, returned=False):
- return np.average(a, axis, weights, returned)
diff --git a/numpy/oldnumeric/linear_algebra.py b/numpy/oldnumeric/linear_algebra.py
deleted file mode 100644
index 8208637b8..000000000
--- a/numpy/oldnumeric/linear_algebra.py
+++ /dev/null
@@ -1,85 +0,0 @@
-"""Backward compatible with LinearAlgebra from Numeric
-
-This module is a lite version of the linalg.py module in SciPy which contains
-high-level Python interface to the LAPACK library. The lite version
-only accesses the following LAPACK functions: dgesv, zgesv, dgeev,
-zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, dpotrf.
-
-"""
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['LinAlgError', 'solve_linear_equations',
- 'inverse', 'cholesky_decomposition', 'eigenvalues',
- 'Heigenvalues', 'generalized_inverse',
- 'determinant', 'singular_value_decomposition',
- 'eigenvectors', 'Heigenvectors',
- 'linear_least_squares'
- ]
-
-from numpy.core import transpose
-import numpy.linalg as linalg
-
-# Linear equations
-
-LinAlgError = linalg.LinAlgError
-
-def solve_linear_equations(a, b):
- return linalg.solve(a, b)
-
-# Matrix inversion
-
-def inverse(a):
- return linalg.inv(a)
-
-# Cholesky decomposition
-
-def cholesky_decomposition(a):
- return linalg.cholesky(a)
-
-# Eigenvalues
-
-def eigenvalues(a):
- return linalg.eigvals(a)
-
-def Heigenvalues(a, UPLO='L'):
- return linalg.eigvalsh(a, UPLO)
-
-# Eigenvectors
-
-def eigenvectors(A):
- w, v = linalg.eig(A)
- return w, transpose(v)
-
-def Heigenvectors(A):
- w, v = linalg.eigh(A)
- return w, transpose(v)
-
-# Generalized inverse
-
-def generalized_inverse(a, rcond = 1.e-10):
- return linalg.pinv(a, rcond)
-
-# Determinant
-
-def determinant(a):
- return linalg.det(a)
-
-# Linear Least Squares
-
-def linear_least_squares(a, b, rcond=1.e-10):
- """returns x,resids,rank,s
-where x minimizes 2-norm(|b - Ax|)
- resids is the sum square residuals
- rank is the rank of A
- s is the rank of the singular values of A in descending order
-
-If b is a matrix then x is also a matrix with corresponding columns.
-If the rank of A is less than the number of columns of A or greater than
-the number of rows, then residuals will be returned as an empty array
-otherwise resids = sum((b-dot(A,x)**2).
-Singular values less than s[0]*rcond are treated as zero.
-"""
- return linalg.lstsq(a, b, rcond)
-
-def singular_value_decomposition(A, full_matrices=0):
- return linalg.svd(A, full_matrices)
diff --git a/numpy/oldnumeric/ma.py b/numpy/oldnumeric/ma.py
deleted file mode 100644
index d41c68edc..000000000
--- a/numpy/oldnumeric/ma.py
+++ /dev/null
@@ -1,2296 +0,0 @@
-"""MA: a facility for dealing with missing observations
-
-MA is generally used as a numpy.array look-alike.
-by Paul F. Dubois.
-
-Copyright 1999, 2000, 2001 Regents of the University of California.
-Released for unlimited redistribution.
-Adapted for numpy_core 2005 by Travis Oliphant and
-(mainly) Paul Dubois.
-
-"""
-from __future__ import division, absolute_import, print_function
-
-import sys
-import types
-import warnings
-from functools import reduce
-
-import numpy.core.umath as umath
-import numpy.core.fromnumeric as fromnumeric
-import numpy.core.numeric as numeric
-from numpy.core.numeric import newaxis, ndarray, inf
-from numpy.core.fromnumeric import amax, amin
-from numpy.core.numerictypes import bool_, typecodes
-import numpy.core.numeric as numeric
-from numpy.compat import bytes, long
-
-if sys.version_info[0] >= 3:
- _MAXINT = sys.maxsize
- _MININT = -sys.maxsize - 1
-else:
- _MAXINT = sys.maxint
- _MININT = -sys.maxint - 1
-
-
-# Ufunc domain lookup for __array_wrap__
-ufunc_domain = {}
-# Ufunc fills lookup for __array__
-ufunc_fills = {}
-
-MaskType = bool_
-nomask = MaskType(0)
-divide_tolerance = 1.e-35
-
-class MAError (Exception):
- def __init__ (self, args=None):
- "Create an exception"
-
- # The .args attribute must be a tuple.
- if not isinstance(args, tuple):
- args = (args,)
- self.args = args
- def __str__(self):
- "Calculate the string representation"
- return str(self.args[0])
- __repr__ = __str__
-
-class _MaskedPrintOption:
- "One instance of this class, masked_print_option, is created."
- def __init__ (self, display):
- "Create the masked print option object."
- self.set_display(display)
- self._enabled = 1
-
- def display (self):
- "Show what prints for masked values."
- return self._display
-
- def set_display (self, s):
- "set_display(s) sets what prints for masked values."
- self._display = s
-
- def enabled (self):
- "Is the use of the display value enabled?"
- return self._enabled
-
- def enable(self, flag=1):
- "Set the enabling flag to flag."
- self._enabled = flag
-
- def __str__ (self):
- return str(self._display)
-
- __repr__ = __str__
-
-#if you single index into a masked location you get this object.
-masked_print_option = _MaskedPrintOption('--')
-
-# Use single element arrays or scalars.
-default_real_fill_value = 1.e20
-default_complex_fill_value = 1.e20 + 0.0j
-default_character_fill_value = '-'
-default_integer_fill_value = 999999
-default_object_fill_value = '?'
-
-def default_fill_value (obj):
- "Function to calculate default fill value for an object."
- if isinstance(obj, float):
- return default_real_fill_value
- elif isinstance(obj, int) or isinstance(obj, long):
- return default_integer_fill_value
- elif isinstance(obj, bytes):
- return default_character_fill_value
- elif isinstance(obj, complex):
- return default_complex_fill_value
- elif isinstance(obj, MaskedArray) or isinstance(obj, ndarray):
- x = obj.dtype.char
- if x in typecodes['Float']:
- return default_real_fill_value
- if x in typecodes['Integer']:
- return default_integer_fill_value
- if x in typecodes['Complex']:
- return default_complex_fill_value
- if x in typecodes['Character']:
- return default_character_fill_value
- if x in typecodes['UnsignedInteger']:
- return umath.absolute(default_integer_fill_value)
- return default_object_fill_value
- else:
- return default_object_fill_value
-
-def minimum_fill_value (obj):
- "Function to calculate default fill value suitable for taking minima."
- if isinstance(obj, float):
- return numeric.inf
- elif isinstance(obj, int) or isinstance(obj, long):
- return _MAXINT
- elif isinstance(obj, MaskedArray) or isinstance(obj, ndarray):
- x = obj.dtype.char
- if x in typecodes['Float']:
- return numeric.inf
- if x in typecodes['Integer']:
- return _MAXINT
- if x in typecodes['UnsignedInteger']:
- return _MAXINT
- else:
- raise TypeError('Unsuitable type for calculating minimum.')
-
-def maximum_fill_value (obj):
- "Function to calculate default fill value suitable for taking maxima."
- if isinstance(obj, float):
- return -inf
- elif isinstance(obj, int) or isinstance(obj, long):
- return -_MAXINT
- elif isinstance(obj, MaskedArray) or isinstance(obj, ndarray):
- x = obj.dtype.char
- if x in typecodes['Float']:
- return -inf
- if x in typecodes['Integer']:
- return -_MAXINT
- if x in typecodes['UnsignedInteger']:
- return 0
- else:
- raise TypeError('Unsuitable type for calculating maximum.')
-
-def set_fill_value (a, fill_value):
- "Set fill value of a if it is a masked array."
- if isMaskedArray(a):
- a.set_fill_value (fill_value)
-
-def getmask (a):
- """Mask of values in a; could be nomask.
- Returns nomask if a is not a masked array.
- To get an array for sure use getmaskarray."""
- if isinstance(a, MaskedArray):
- return a.raw_mask()
- else:
- return nomask
-
-def getmaskarray (a):
- """Mask of values in a; an array of zeros if mask is nomask
- or not a masked array, and is a byte-sized integer.
- Do not try to add up entries, for example.
- """
- m = getmask(a)
- if m is nomask:
- return make_mask_none(shape(a))
- else:
- return m
-
-def is_mask (m):
- """Is m a legal mask? Does not check contents, only type.
- """
- try:
- return m.dtype.type is MaskType
- except AttributeError:
- return False
-
-def make_mask (m, copy=0, flag=0):
- """make_mask(m, copy=0, flag=0)
- return m as a mask, creating a copy if necessary or requested.
- Can accept any sequence of integers or nomask. Does not check
- that contents must be 0s and 1s.
- if flag, return nomask if m contains no true elements.
- """
- if m is nomask:
- return nomask
- elif isinstance(m, ndarray):
- if m.dtype.type is MaskType:
- if copy:
- result = numeric.array(m, dtype=MaskType, copy=copy)
- else:
- result = m
- else:
- result = m.astype(MaskType)
- else:
- result = filled(m, True).astype(MaskType)
-
- if flag and not fromnumeric.sometrue(fromnumeric.ravel(result)):
- return nomask
- else:
- return result
-
-def make_mask_none (s):
- "Return a mask of all zeros of shape s."
- result = numeric.zeros(s, dtype=MaskType)
- result.shape = s
- return result
-
-def mask_or (m1, m2):
- """Logical or of the mask candidates m1 and m2, treating nomask as false.
- Result may equal m1 or m2 if the other is nomask.
- """
- if m1 is nomask: return make_mask(m2)
- if m2 is nomask: return make_mask(m1)
- if m1 is m2 and is_mask(m1): return m1
- return make_mask(umath.logical_or(m1, m2))
-
-def filled (a, value = None):
- """a as a contiguous numeric array with any masked areas replaced by value
- if value is None or the special element "masked", get_fill_value(a)
- is used instead.
-
- If a is already a contiguous numeric array, a itself is returned.
-
- filled(a) can be used to be sure that the result is numeric when
- passing an object a to other software ignorant of MA, in particular to
- numeric itself.
- """
- if isinstance(a, MaskedArray):
- return a.filled(value)
- elif isinstance(a, ndarray) and a.flags['CONTIGUOUS']:
- return a
- elif isinstance(a, dict):
- return numeric.array(a, 'O')
- else:
- return numeric.array(a)
-
-def get_fill_value (a):
- """
- The fill value of a, if it has one; otherwise, the default fill value
- for that type.
- """
- if isMaskedArray(a):
- result = a.fill_value()
- else:
- result = default_fill_value(a)
- return result
-
-def common_fill_value (a, b):
- "The common fill_value of a and b, if there is one, or None"
- t1 = get_fill_value(a)
- t2 = get_fill_value(b)
- if t1 == t2: return t1
- return None
-
-# Domain functions return 1 where the argument(s) are not in the domain.
-class domain_check_interval:
- "domain_check_interval(a,b)(x) = true where x < a or y > b"
- def __init__(self, y1, y2):
- "domain_check_interval(a,b)(x) = true where x < a or y > b"
- self.y1 = y1
- self.y2 = y2
-
- def __call__ (self, x):
- "Execute the call behavior."
- return umath.logical_or(umath.greater (x, self.y2),
- umath.less(x, self.y1)
- )
-
-class domain_tan:
- "domain_tan(eps) = true where abs(cos(x)) < eps)"
- def __init__(self, eps):
- "domain_tan(eps) = true where abs(cos(x)) < eps)"
- self.eps = eps
-
- def __call__ (self, x):
- "Execute the call behavior."
- return umath.less(umath.absolute(umath.cos(x)), self.eps)
-
-class domain_greater:
- "domain_greater(v)(x) = true where x <= v"
- def __init__(self, critical_value):
- "domain_greater(v)(x) = true where x <= v"
- self.critical_value = critical_value
-
- def __call__ (self, x):
- "Execute the call behavior."
- return umath.less_equal (x, self.critical_value)
-
-class domain_greater_equal:
- "domain_greater_equal(v)(x) = true where x < v"
- def __init__(self, critical_value):
- "domain_greater_equal(v)(x) = true where x < v"
- self.critical_value = critical_value
-
- def __call__ (self, x):
- "Execute the call behavior."
- return umath.less (x, self.critical_value)
-
-class masked_unary_operation:
- def __init__ (self, aufunc, fill=0, domain=None):
- """ masked_unary_operation(aufunc, fill=0, domain=None)
- aufunc(fill) must be defined
- self(x) returns aufunc(x)
- with masked values where domain(x) is true or getmask(x) is true.
- """
- self.f = aufunc
- self.fill = fill
- self.domain = domain
- self.__doc__ = getattr(aufunc, "__doc__", str(aufunc))
- self.__name__ = getattr(aufunc, "__name__", str(aufunc))
- ufunc_domain[aufunc] = domain
- ufunc_fills[aufunc] = fill,
-
- def __call__ (self, a, *args, **kwargs):
- "Execute the call behavior."
-# numeric tries to return scalars rather than arrays when given scalars.
- m = getmask(a)
- d1 = filled(a, self.fill)
- if self.domain is not None:
- m = mask_or(m, self.domain(d1))
- result = self.f(d1, *args, **kwargs)
- return masked_array(result, m)
-
- def __str__ (self):
- return "Masked version of " + str(self.f)
-
-
-class domain_safe_divide:
- def __init__ (self, tolerance=divide_tolerance):
- self.tolerance = tolerance
- def __call__ (self, a, b):
- return umath.absolute(a) * self.tolerance >= umath.absolute(b)
-
-class domained_binary_operation:
- """Binary operations that have a domain, like divide. These are complicated
- so they are a separate class. They have no reduce, outer or accumulate.
- """
- def __init__ (self, abfunc, domain, fillx=0, filly=0):
- """abfunc(fillx, filly) must be defined.
- abfunc(x, filly) = x for all x to enable reduce.
- """
- self.f = abfunc
- self.domain = domain
- self.fillx = fillx
- self.filly = filly
- self.__doc__ = getattr(abfunc, "__doc__", str(abfunc))
- self.__name__ = getattr(abfunc, "__name__", str(abfunc))
- ufunc_domain[abfunc] = domain
- ufunc_fills[abfunc] = fillx, filly
-
- def __call__(self, a, b):
- "Execute the call behavior."
- ma = getmask(a)
- mb = getmask(b)
- d1 = filled(a, self.fillx)
- d2 = filled(b, self.filly)
- t = self.domain(d1, d2)
-
- if fromnumeric.sometrue(t, None):
- d2 = where(t, self.filly, d2)
- mb = mask_or(mb, t)
- m = mask_or(ma, mb)
- result = self.f(d1, d2)
- return masked_array(result, m)
-
- def __str__ (self):
- return "Masked version of " + str(self.f)
-
-class masked_binary_operation:
- def __init__ (self, abfunc, fillx=0, filly=0):
- """abfunc(fillx, filly) must be defined.
- abfunc(x, filly) = x for all x to enable reduce.
- """
- self.f = abfunc
- self.fillx = fillx
- self.filly = filly
- self.__doc__ = getattr(abfunc, "__doc__", str(abfunc))
- ufunc_domain[abfunc] = None
- ufunc_fills[abfunc] = fillx, filly
-
- def __call__ (self, a, b, *args, **kwargs):
- "Execute the call behavior."
- m = mask_or(getmask(a), getmask(b))
- d1 = filled(a, self.fillx)
- d2 = filled(b, self.filly)
- result = self.f(d1, d2, *args, **kwargs)
- if isinstance(result, ndarray) \
- and m.ndim != 0 \
- and m.shape != result.shape:
- m = mask_or(getmaskarray(a), getmaskarray(b))
- return masked_array(result, m)
-
- def reduce (self, target, axis=0, dtype=None):
- """Reduce target along the given axis with this function."""
- m = getmask(target)
- t = filled(target, self.filly)
- if t.shape == ():
- t = t.reshape(1)
- if m is not nomask:
- m = make_mask(m, copy=1)
- m.shape = (1,)
- if m is nomask:
- t = self.f.reduce(t, axis)
- else:
- t = masked_array (t, m)
- # XXX: "or t.dtype" below is a workaround for what appears
- # XXX: to be a bug in reduce.
- t = self.f.reduce(filled(t, self.filly), axis,
- dtype=dtype or t.dtype)
- m = umath.logical_and.reduce(m, axis)
- if isinstance(t, ndarray):
- return masked_array(t, m, get_fill_value(target))
- elif m:
- return masked
- else:
- return t
-
- def outer (self, a, b):
- "Return the function applied to the outer product of a and b."
- ma = getmask(a)
- mb = getmask(b)
- if ma is nomask and mb is nomask:
- m = nomask
- else:
- ma = getmaskarray(a)
- mb = getmaskarray(b)
- m = logical_or.outer(ma, mb)
- d = self.f.outer(filled(a, self.fillx), filled(b, self.filly))
- return masked_array(d, m)
-
- def accumulate (self, target, axis=0):
- """Accumulate target along axis after filling with y fill value."""
- t = filled(target, self.filly)
- return masked_array (self.f.accumulate (t, axis))
- def __str__ (self):
- return "Masked version of " + str(self.f)
-
-sqrt = masked_unary_operation(umath.sqrt, 0.0, domain_greater_equal(0.0))
-log = masked_unary_operation(umath.log, 1.0, domain_greater(0.0))
-log10 = masked_unary_operation(umath.log10, 1.0, domain_greater(0.0))
-exp = masked_unary_operation(umath.exp)
-conjugate = masked_unary_operation(umath.conjugate)
-sin = masked_unary_operation(umath.sin)
-cos = masked_unary_operation(umath.cos)
-tan = masked_unary_operation(umath.tan, 0.0, domain_tan(1.e-35))
-arcsin = masked_unary_operation(umath.arcsin, 0.0, domain_check_interval(-1.0, 1.0))
-arccos = masked_unary_operation(umath.arccos, 0.0, domain_check_interval(-1.0, 1.0))
-arctan = masked_unary_operation(umath.arctan)
-# Missing from numeric
-arcsinh = masked_unary_operation(umath.arcsinh)
-arccosh = masked_unary_operation(umath.arccosh, 1.0, domain_greater_equal(1.0))
-arctanh = masked_unary_operation(umath.arctanh, 0.0, domain_check_interval(-1.0+1e-15, 1.0-1e-15))
-sinh = masked_unary_operation(umath.sinh)
-cosh = masked_unary_operation(umath.cosh)
-tanh = masked_unary_operation(umath.tanh)
-absolute = masked_unary_operation(umath.absolute)
-fabs = masked_unary_operation(umath.fabs)
-negative = masked_unary_operation(umath.negative)
-
-def nonzero(a):
- """returns the indices of the elements of a which are not zero
- and not masked
- """
- return numeric.asarray(filled(a, 0).nonzero())
-
-around = masked_unary_operation(fromnumeric.round_)
-floor = masked_unary_operation(umath.floor)
-ceil = masked_unary_operation(umath.ceil)
-logical_not = masked_unary_operation(umath.logical_not)
-
-add = masked_binary_operation(umath.add)
-subtract = masked_binary_operation(umath.subtract)
-subtract.reduce = None
-multiply = masked_binary_operation(umath.multiply, 1, 1)
-divide = domained_binary_operation(umath.divide, domain_safe_divide(), 0, 1)
-true_divide = domained_binary_operation(umath.true_divide, domain_safe_divide(), 0, 1)
-floor_divide = domained_binary_operation(umath.floor_divide, domain_safe_divide(), 0, 1)
-remainder = domained_binary_operation(umath.remainder, domain_safe_divide(), 0, 1)
-fmod = domained_binary_operation(umath.fmod, domain_safe_divide(), 0, 1)
-hypot = masked_binary_operation(umath.hypot)
-arctan2 = masked_binary_operation(umath.arctan2, 0.0, 1.0)
-arctan2.reduce = None
-equal = masked_binary_operation(umath.equal)
-equal.reduce = None
-not_equal = masked_binary_operation(umath.not_equal)
-not_equal.reduce = None
-less_equal = masked_binary_operation(umath.less_equal)
-less_equal.reduce = None
-greater_equal = masked_binary_operation(umath.greater_equal)
-greater_equal.reduce = None
-less = masked_binary_operation(umath.less)
-less.reduce = None
-greater = masked_binary_operation(umath.greater)
-greater.reduce = None
-logical_and = masked_binary_operation(umath.logical_and)
-alltrue = masked_binary_operation(umath.logical_and, 1, 1).reduce
-logical_or = masked_binary_operation(umath.logical_or)
-sometrue = logical_or.reduce
-logical_xor = masked_binary_operation(umath.logical_xor)
-bitwise_and = masked_binary_operation(umath.bitwise_and)
-bitwise_or = masked_binary_operation(umath.bitwise_or)
-bitwise_xor = masked_binary_operation(umath.bitwise_xor)
-
-def rank (object):
- return fromnumeric.rank(filled(object))
-
-def shape (object):
- return fromnumeric.shape(filled(object))
-
-def size (object, axis=None):
- return fromnumeric.size(filled(object), axis)
-
-class MaskedArray (object):
- """Arrays with possibly masked values.
- Masked values of 1 exclude the corresponding element from
- any computation.
-
- Construction:
- x = array(data, dtype=None, copy=True, order=False,
- mask = nomask, fill_value=None)
-
- If copy=False, every effort is made not to copy the data:
- If data is a MaskedArray, and argument mask=nomask,
- then the candidate data is data.data and the
- mask used is data.mask. If data is a numeric array,
- it is used as the candidate raw data.
- If dtype is not None and
- is != data.dtype.char then a data copy is required.
- Otherwise, the candidate is used.
-
- If a data copy is required, raw data stored is the result of:
- numeric.array(data, dtype=dtype.char, copy=copy)
-
- If mask is nomask there are no masked values. Otherwise mask must
- be convertible to an array of booleans with the same shape as x.
-
- fill_value is used to fill in masked values when necessary,
- such as when printing and in method/function filled().
- The fill_value is not used for computation within this module.
- """
- __array_priority__ = 10.1
- def __init__(self, data, dtype=None, copy=True, order=False,
- mask=nomask, fill_value=None):
- """array(data, dtype=None, copy=True, order=False, mask=nomask, fill_value=None)
- If data already a numeric array, its dtype becomes the default value of dtype.
- """
- if dtype is None:
- tc = None
- else:
- tc = numeric.dtype(dtype)
- need_data_copied = copy
- if isinstance(data, MaskedArray):
- c = data.data
- if tc is None:
- tc = c.dtype
- elif tc != c.dtype:
- need_data_copied = True
- if mask is nomask:
- mask = data.mask
- elif mask is not nomask: #attempting to change the mask
- need_data_copied = True
-
- elif isinstance(data, ndarray):
- c = data
- if tc is None:
- tc = c.dtype
- elif tc != c.dtype:
- need_data_copied = True
- else:
- need_data_copied = False #because I'll do it now
- c = numeric.array(data, dtype=tc, copy=True, order=order)
- tc = c.dtype
-
- if need_data_copied:
- if tc == c.dtype:
- self._data = numeric.array(c, dtype=tc, copy=True, order=order)
- else:
- self._data = c.astype(tc)
- else:
- self._data = c
-
- if mask is nomask:
- self._mask = nomask
- self._shared_mask = 0
- else:
- self._mask = make_mask (mask)
- if self._mask is nomask:
- self._shared_mask = 0
- else:
- self._shared_mask = (self._mask is mask)
- nm = size(self._mask)
- nd = size(self._data)
- if nm != nd:
- if nm == 1:
- self._mask = fromnumeric.resize(self._mask, self._data.shape)
- self._shared_mask = 0
- elif nd == 1:
- self._data = fromnumeric.resize(self._data, self._mask.shape)
- self._data.shape = self._mask.shape
- else:
- raise MAError("Mask and data not compatible.")
- elif nm == 1 and shape(self._mask) != shape(self._data):
- self.unshare_mask()
- self._mask.shape = self._data.shape
-
- self.set_fill_value(fill_value)
-
- def __array__ (self, t=None, context=None):
- "Special hook for numeric. Converts to numeric if possible."
- if self._mask is not nomask:
- if fromnumeric.ravel(self._mask).any():
- if context is None:
- warnings.warn("Cannot automatically convert masked array to "\
- "numeric because data\n is masked in one or "\
- "more locations.");
- return self._data
- #raise MAError(
- # """Cannot automatically convert masked array to numeric because data
- # is masked in one or more locations.
- # """)
- else:
- func, args, i = context
- fills = ufunc_fills.get(func)
- if fills is None:
- raise MAError("%s not known to ma" % func)
- return self.filled(fills[i])
- else: # Mask is all false
- # Optimize to avoid future invocations of this section.
- self._mask = nomask
- self._shared_mask = 0
- if t:
- return self._data.astype(t)
- else:
- return self._data
-
- def __array_wrap__ (self, array, context=None):
- """Special hook for ufuncs.
-
- Wraps the numpy array and sets the mask according to
- context.
- """
- if context is None:
- return MaskedArray(array, copy=False, mask=nomask)
- func, args = context[:2]
- domain = ufunc_domain[func]
- m = reduce(mask_or, [getmask(a) for a in args])
- if domain is not None:
- m = mask_or(m, domain(*[getattr(a, '_data', a)
- for a in args]))
- if m is not nomask:
- try:
- shape = array.shape
- except AttributeError:
- pass
- else:
- if m.shape != shape:
- m = reduce(mask_or, [getmaskarray(a) for a in args])
-
- return MaskedArray(array, copy=False, mask=m)
-
- def _get_shape(self):
- "Return the current shape."
- return self._data.shape
-
- def _set_shape (self, newshape):
- "Set the array's shape."
- self._data.shape = newshape
- if self._mask is not nomask:
- self._mask = self._mask.copy()
- self._mask.shape = newshape
-
- def _get_flat(self):
- """Calculate the flat value.
- """
- if self._mask is nomask:
- return masked_array(self._data.ravel(), mask=nomask,
- fill_value = self.fill_value())
- else:
- return masked_array(self._data.ravel(),
- mask=self._mask.ravel(),
- fill_value = self.fill_value())
-
- def _set_flat (self, value):
- "x.flat = value"
- y = self.ravel()
- y[:] = value
-
- def _get_real(self):
- "Get the real part of a complex array."
- if self._mask is nomask:
- return masked_array(self._data.real, mask=nomask,
- fill_value = self.fill_value())
- else:
- return masked_array(self._data.real, mask=self._mask,
- fill_value = self.fill_value())
-
- def _set_real (self, value):
- "x.real = value"
- y = self.real
- y[...] = value
-
- def _get_imaginary(self):
- "Get the imaginary part of a complex array."
- if self._mask is nomask:
- return masked_array(self._data.imag, mask=nomask,
- fill_value = self.fill_value())
- else:
- return masked_array(self._data.imag, mask=self._mask,
- fill_value = self.fill_value())
-
- def _set_imaginary (self, value):
- "x.imaginary = value"
- y = self.imaginary
- y[...] = value
-
- def __str__(self):
- """Calculate the str representation, using masked for fill if
- it is enabled. Otherwise fill with fill value.
- """
- if masked_print_option.enabled():
- f = masked_print_option
- # XXX: Without the following special case masked
- # XXX: would print as "[--]", not "--". Can we avoid
- # XXX: checks for masked by choosing a different value
- # XXX: for the masked singleton? 2005-01-05 -- sasha
- if self is masked:
- return str(f)
- m = self._mask
- if m is not nomask and m.shape == () and m:
- return str(f)
- # convert to object array to make filled work
- self = self.astype(object)
- else:
- f = self.fill_value()
- res = self.filled(f)
- return str(res)
-
- def __repr__(self):
- """Calculate the repr representation, using masked for fill if
- it is enabled. Otherwise fill with fill value.
- """
- with_mask = """\
-array(data =
- %(data)s,
- mask =
- %(mask)s,
- fill_value=%(fill)s)
-"""
- with_mask1 = """\
-array(data = %(data)s,
- mask = %(mask)s,
- fill_value=%(fill)s)
-"""
- without_mask = """array(
- %(data)s)"""
- without_mask1 = """array(%(data)s)"""
-
- n = len(self.shape)
- if self._mask is nomask:
- if n <= 1:
- return without_mask1 % {'data':str(self.filled())}
- return without_mask % {'data':str(self.filled())}
- else:
- if n <= 1:
- return with_mask % {
- 'data': str(self.filled()),
- 'mask': str(self._mask),
- 'fill': str(self.fill_value())
- }
- return with_mask % {
- 'data': str(self.filled()),
- 'mask': str(self._mask),
- 'fill': str(self.fill_value())
- }
- without_mask1 = """array(%(data)s)"""
- if self._mask is nomask:
- return without_mask % {'data':str(self.filled())}
- else:
- return with_mask % {
- 'data': str(self.filled()),
- 'mask': str(self._mask),
- 'fill': str(self.fill_value())
- }
-
- def __float__(self):
- "Convert self to float."
- self.unmask()
- if self._mask is not nomask:
- raise MAError('Cannot convert masked element to a Python float.')
- return float(self.data.item())
-
- def __int__(self):
- "Convert self to int."
- self.unmask()
- if self._mask is not nomask:
- raise MAError('Cannot convert masked element to a Python int.')
- return int(self.data.item())
-
- def __getitem__(self, i):
- "Get item described by i. Not a copy as in previous versions."
- self.unshare_mask()
- m = self._mask
- dout = self._data[i]
- if m is nomask:
- try:
- if dout.size == 1:
- return dout
- else:
- return masked_array(dout, fill_value=self._fill_value)
- except AttributeError:
- return dout
- mi = m[i]
- if mi.size == 1:
- if mi:
- return masked
- else:
- return dout
- else:
- return masked_array(dout, mi, fill_value=self._fill_value)
-
-# --------
-# setitem and setslice notes
-# note that if value is masked, it means to mask those locations.
-# setting a value changes the mask to match the value in those locations.
-
- def __setitem__(self, index, value):
- "Set item described by index. If value is masked, mask those locations."
- d = self._data
- if self is masked:
- raise MAError('Cannot alter masked elements.')
- if value is masked:
- if self._mask is nomask:
- self._mask = make_mask_none(d.shape)
- self._shared_mask = False
- else:
- self.unshare_mask()
- self._mask[index] = True
- return
- m = getmask(value)
- value = filled(value).astype(d.dtype)
- d[index] = value
- if m is nomask:
- if self._mask is not nomask:
- self.unshare_mask()
- self._mask[index] = False
- else:
- if self._mask is nomask:
- self._mask = make_mask_none(d.shape)
- self._shared_mask = True
- else:
- self.unshare_mask()
- self._mask[index] = m
-
- def __nonzero__(self):
- """returns true if any element is non-zero or masked
-
- """
- # XXX: This changes bool conversion logic from MA.
- # XXX: In MA bool(a) == len(a) != 0, but in numpy
- # XXX: scalars do not have len
- m = self._mask
- d = self._data
- return bool(m is not nomask and m.any()
- or d is not nomask and d.any())
-
- def __bool__(self):
- """returns true if any element is non-zero or masked
-
- """
- # XXX: This changes bool conversion logic from MA.
- # XXX: In MA bool(a) == len(a) != 0, but in numpy
- # XXX: scalars do not have len
- m = self._mask
- d = self._data
- return bool(m is not nomask and m.any()
- or d is not nomask and d.any())
-
- def __len__ (self):
- """Return length of first dimension. This is weird but Python's
- slicing behavior depends on it."""
- return len(self._data)
-
- def __and__(self, other):
- "Return bitwise_and"
- return bitwise_and(self, other)
-
- def __or__(self, other):
- "Return bitwise_or"
- return bitwise_or(self, other)
-
- def __xor__(self, other):
- "Return bitwise_xor"
- return bitwise_xor(self, other)
-
- __rand__ = __and__
- __ror__ = __or__
- __rxor__ = __xor__
-
- def __abs__(self):
- "Return absolute(self)"
- return absolute(self)
-
- def __neg__(self):
- "Return negative(self)"
- return negative(self)
-
- def __pos__(self):
- "Return array(self)"
- return array(self)
-
- def __add__(self, other):
- "Return add(self, other)"
- return add(self, other)
-
- __radd__ = __add__
-
- def __mod__ (self, other):
- "Return remainder(self, other)"
- return remainder(self, other)
-
- def __rmod__ (self, other):
- "Return remainder(other, self)"
- return remainder(other, self)
-
- def __lshift__ (self, n):
- return left_shift(self, n)
-
- def __rshift__ (self, n):
- return right_shift(self, n)
-
- def __sub__(self, other):
- "Return subtract(self, other)"
- return subtract(self, other)
-
- def __rsub__(self, other):
- "Return subtract(other, self)"
- return subtract(other, self)
-
- def __mul__(self, other):
- "Return multiply(self, other)"
- return multiply(self, other)
-
- __rmul__ = __mul__
-
- def __div__(self, other):
- "Return divide(self, other)"
- return divide(self, other)
-
- def __rdiv__(self, other):
- "Return divide(other, self)"
- return divide(other, self)
-
- def __truediv__(self, other):
- "Return divide(self, other)"
- return true_divide(self, other)
-
- def __rtruediv__(self, other):
- "Return divide(other, self)"
- return true_divide(other, self)
-
- def __floordiv__(self, other):
- "Return divide(self, other)"
- return floor_divide(self, other)
-
- def __rfloordiv__(self, other):
- "Return divide(other, self)"
- return floor_divide(other, self)
-
- def __pow__(self, other, third=None):
- "Return power(self, other, third)"
- return power(self, other, third)
-
- def __sqrt__(self):
- "Return sqrt(self)"
- return sqrt(self)
-
- def __iadd__(self, other):
- "Add other to self in place."
- t = self._data.dtype.char
- f = filled(other, 0)
- t1 = f.dtype.char
- if t == t1:
- pass
- elif t in typecodes['Integer']:
- if t1 in typecodes['Integer']:
- f = f.astype(t)
- else:
- raise TypeError('Incorrect type for in-place operation.')
- elif t in typecodes['Float']:
- if t1 in typecodes['Integer']:
- f = f.astype(t)
- elif t1 in typecodes['Float']:
- f = f.astype(t)
- else:
- raise TypeError('Incorrect type for in-place operation.')
- elif t in typecodes['Complex']:
- if t1 in typecodes['Integer']:
- f = f.astype(t)
- elif t1 in typecodes['Float']:
- f = f.astype(t)
- elif t1 in typecodes['Complex']:
- f = f.astype(t)
- else:
- raise TypeError('Incorrect type for in-place operation.')
- else:
- raise TypeError('Incorrect type for in-place operation.')
-
- if self._mask is nomask:
- self._data += f
- m = getmask(other)
- self._mask = m
- self._shared_mask = m is not nomask
- else:
- result = add(self, masked_array(f, mask=getmask(other)))
- self._data = result.data
- self._mask = result.mask
- self._shared_mask = 1
- return self
-
- def __imul__(self, other):
- "Add other to self in place."
- t = self._data.dtype.char
- f = filled(other, 0)
- t1 = f.dtype.char
- if t == t1:
- pass
- elif t in typecodes['Integer']:
- if t1 in typecodes['Integer']:
- f = f.astype(t)
- else:
- raise TypeError('Incorrect type for in-place operation.')
- elif t in typecodes['Float']:
- if t1 in typecodes['Integer']:
- f = f.astype(t)
- elif t1 in typecodes['Float']:
- f = f.astype(t)
- else:
- raise TypeError('Incorrect type for in-place operation.')
- elif t in typecodes['Complex']:
- if t1 in typecodes['Integer']:
- f = f.astype(t)
- elif t1 in typecodes['Float']:
- f = f.astype(t)
- elif t1 in typecodes['Complex']:
- f = f.astype(t)
- else:
- raise TypeError('Incorrect type for in-place operation.')
- else:
- raise TypeError('Incorrect type for in-place operation.')
-
- if self._mask is nomask:
- self._data *= f
- m = getmask(other)
- self._mask = m
- self._shared_mask = m is not nomask
- else:
- result = multiply(self, masked_array(f, mask=getmask(other)))
- self._data = result.data
- self._mask = result.mask
- self._shared_mask = 1
- return self
-
- def __isub__(self, other):
- "Subtract other from self in place."
- t = self._data.dtype.char
- f = filled(other, 0)
- t1 = f.dtype.char
- if t == t1:
- pass
- elif t in typecodes['Integer']:
- if t1 in typecodes['Integer']:
- f = f.astype(t)
- else:
- raise TypeError('Incorrect type for in-place operation.')
- elif t in typecodes['Float']:
- if t1 in typecodes['Integer']:
- f = f.astype(t)
- elif t1 in typecodes['Float']:
- f = f.astype(t)
- else:
- raise TypeError('Incorrect type for in-place operation.')
- elif t in typecodes['Complex']:
- if t1 in typecodes['Integer']:
- f = f.astype(t)
- elif t1 in typecodes['Float']:
- f = f.astype(t)
- elif t1 in typecodes['Complex']:
- f = f.astype(t)
- else:
- raise TypeError('Incorrect type for in-place operation.')
- else:
- raise TypeError('Incorrect type for in-place operation.')
-
- if self._mask is nomask:
- self._data -= f
- m = getmask(other)
- self._mask = m
- self._shared_mask = m is not nomask
- else:
- result = subtract(self, masked_array(f, mask=getmask(other)))
- self._data = result.data
- self._mask = result.mask
- self._shared_mask = 1
- return self
-
-
-
- def __idiv__(self, other):
- "Divide self by other in place."
- t = self._data.dtype.char
- f = filled(other, 0)
- t1 = f.dtype.char
- if t == t1:
- pass
- elif t in typecodes['Integer']:
- if t1 in typecodes['Integer']:
- f = f.astype(t)
- else:
- raise TypeError('Incorrect type for in-place operation.')
- elif t in typecodes['Float']:
- if t1 in typecodes['Integer']:
- f = f.astype(t)
- elif t1 in typecodes['Float']:
- f = f.astype(t)
- else:
- raise TypeError('Incorrect type for in-place operation.')
- elif t in typecodes['Complex']:
- if t1 in typecodes['Integer']:
- f = f.astype(t)
- elif t1 in typecodes['Float']:
- f = f.astype(t)
- elif t1 in typecodes['Complex']:
- f = f.astype(t)
- else:
- raise TypeError('Incorrect type for in-place operation.')
- else:
- raise TypeError('Incorrect type for in-place operation.')
- mo = getmask(other)
- result = divide(self, masked_array(f, mask=mo))
- self._data = result.data
- dm = result.raw_mask()
- if dm is not self._mask:
- self._mask = dm
- self._shared_mask = 1
- return self
-
- def __eq__(self, other):
- return equal(self, other)
-
- def __ne__(self, other):
- return not_equal(self, other)
-
- def __lt__(self, other):
- return less(self, other)
-
- def __le__(self, other):
- return less_equal(self, other)
-
- def __gt__(self, other):
- return greater(self, other)
-
- def __ge__(self, other):
- return greater_equal(self, other)
-
- def astype (self, tc):
- "return self as array of given type."
- d = self._data.astype(tc)
- return array(d, mask=self._mask)
-
- def byte_swapped(self):
- """Returns the raw data field, byte_swapped. Included for consistency
- with numeric but doesn't make sense in this context.
- """
- return self._data.byte_swapped()
-
- def compressed (self):
- "A 1-D array of all the non-masked data."
- d = fromnumeric.ravel(self._data)
- if self._mask is nomask:
- return array(d)
- else:
- m = 1 - fromnumeric.ravel(self._mask)
- c = fromnumeric.compress(m, d)
- return array(c, copy=0)
-
- def count (self, axis = None):
- "Count of the non-masked elements in a, or along a certain axis."
- m = self._mask
- s = self._data.shape
- ls = len(s)
- if m is nomask:
- if ls == 0:
- return 1
- if ls == 1:
- return s[0]
- if axis is None:
- return reduce(lambda x, y:x*y, s)
- else:
- n = s[axis]
- t = list(s)
- del t[axis]
- return ones(t) * n
- if axis is None:
- w = fromnumeric.ravel(m).astype(int)
- n1 = size(w)
- if n1 == 1:
- n2 = w[0]
- else:
- n2 = umath.add.reduce(w)
- return n1 - n2
- else:
- n1 = size(m, axis)
- n2 = sum(m.astype(int), axis)
- return n1 - n2
-
- def dot (self, other):
- "s.dot(other) = innerproduct(s, other)"
- return innerproduct(self, other)
-
- def fill_value(self):
- "Get the current fill value."
- return self._fill_value
-
- def filled (self, fill_value=None):
- """A numeric array with masked values filled. If fill_value is None,
- use self.fill_value().
-
- If mask is nomask, copy data only if not contiguous.
- Result is always a contiguous, numeric array.
-# Is contiguous really necessary now?
- """
- d = self._data
- m = self._mask
- if m is nomask:
- if d.flags['CONTIGUOUS']:
- return d
- else:
- return d.copy()
- else:
- if fill_value is None:
- value = self._fill_value
- else:
- value = fill_value
-
- if self is masked:
- result = numeric.array(value)
- else:
- try:
- result = numeric.array(d, dtype=d.dtype, copy=1)
- result[m] = value
- except (TypeError, AttributeError):
- #ok, can't put that value in here
- value = numeric.array(value, dtype=object)
- d = d.astype(object)
- result = fromnumeric.choose(m, (d, value))
- return result
-
- def ids (self):
- """Return the ids of the data and mask areas"""
- return (id(self._data), id(self._mask))
-
- def iscontiguous (self):
- "Is the data contiguous?"
- return self._data.flags['CONTIGUOUS']
-
- def itemsize(self):
- "Item size of each data item."
- return self._data.itemsize
-
-
- def outer(self, other):
- "s.outer(other) = outerproduct(s, other)"
- return outerproduct(self, other)
-
- def put (self, values):
- """Set the non-masked entries of self to filled(values).
- No change to mask
- """
- iota = numeric.arange(self.size)
- d = self._data
- if self._mask is nomask:
- ind = iota
- else:
- ind = fromnumeric.compress(1 - self._mask, iota)
- d[ind] = filled(values).astype(d.dtype)
-
- def putmask (self, values):
- """Set the masked entries of self to filled(values).
- Mask changed to nomask.
- """
- d = self._data
- if self._mask is not nomask:
- d[self._mask] = filled(values).astype(d.dtype)
- self._shared_mask = 0
- self._mask = nomask
-
- def ravel (self):
- """Return a 1-D view of self."""
- if self._mask is nomask:
- return masked_array(self._data.ravel())
- else:
- return masked_array(self._data.ravel(), self._mask.ravel())
-
- def raw_data (self):
- """ Obsolete; use data property instead.
- The raw data; portions may be meaningless.
- May be noncontiguous. Expert use only."""
- return self._data
- data = property(fget=raw_data,
- doc="The data, but values at masked locations are meaningless.")
-
- def raw_mask (self):
- """ Obsolete; use mask property instead.
- May be noncontiguous. Expert use only.
- """
- return self._mask
- mask = property(fget=raw_mask,
- doc="The mask, may be nomask. Values where mask true are meaningless.")
-
- def reshape (self, *s):
- """This array reshaped to shape s"""
- d = self._data.reshape(*s)
- if self._mask is nomask:
- return masked_array(d)
- else:
- m = self._mask.reshape(*s)
- return masked_array(d, m)
-
- def set_fill_value (self, v=None):
- "Set the fill value to v. Omit v to restore default."
- if v is None:
- v = default_fill_value (self.raw_data())
- self._fill_value = v
-
- def _get_ndim(self):
- return self._data.ndim
- ndim = property(_get_ndim, doc=numeric.ndarray.ndim.__doc__)
-
- def _get_size (self):
- return self._data.size
- size = property(fget=_get_size, doc="Number of elements in the array.")
-## CHECK THIS: signature of numeric.array.size?
-
- def _get_dtype(self):
- return self._data.dtype
- dtype = property(fget=_get_dtype, doc="type of the array elements.")
-
- def item(self, *args):
- "Return Python scalar if possible"
- if self._mask is not nomask:
- m = self._mask.item(*args)
- try:
- if m[0]:
- return masked
- except IndexError:
- return masked
- return self._data.item(*args)
-
- def itemset(self, *args):
- "Set Python scalar into array"
- item = args[-1]
- args = args[:-1]
- self[args] = item
-
- def tolist(self, fill_value=None):
- "Convert to list"
- return self.filled(fill_value).tolist()
-
- def tostring(self, fill_value=None):
- "Convert to string"
- return self.filled(fill_value).tostring()
-
- def unmask (self):
- "Replace the mask by nomask if possible."
- if self._mask is nomask: return
- m = make_mask(self._mask, flag=1)
- if m is nomask:
- self._mask = nomask
- self._shared_mask = 0
-
- def unshare_mask (self):
- "If currently sharing mask, make a copy."
- if self._shared_mask:
- self._mask = make_mask (self._mask, copy=1, flag=0)
- self._shared_mask = 0
-
- def _get_ctypes(self):
- return self._data.ctypes
-
- def _get_T(self):
- if (self.ndim < 2):
- return self
- return self.transpose()
-
- shape = property(_get_shape, _set_shape,
- doc = 'tuple giving the shape of the array')
-
- flat = property(_get_flat, _set_flat,
- doc = 'Access array in flat form.')
-
- real = property(_get_real, _set_real,
- doc = 'Access the real part of the array')
-
- imaginary = property(_get_imaginary, _set_imaginary,
- doc = 'Access the imaginary part of the array')
-
- imag = imaginary
-
- ctypes = property(_get_ctypes, None, doc="ctypes")
-
- T = property(_get_T, None, doc="get transpose")
-
-#end class MaskedArray
-
-array = MaskedArray
-
-def isMaskedArray (x):
- "Is x a masked array, that is, an instance of MaskedArray?"
- return isinstance(x, MaskedArray)
-
-isarray = isMaskedArray
-isMA = isMaskedArray #backward compatibility
-
-def allclose (a, b, fill_value=1, rtol=1.e-5, atol=1.e-8):
- """ Returns true if all components of a and b are equal
- subject to given tolerances.
- If fill_value is 1, masked values considered equal.
- If fill_value is 0, masked values considered unequal.
- The relative error rtol should be positive and << 1.0
- The absolute error atol comes into play for those elements
- of b that are very small or zero; it says how small a must be also.
- """
- m = mask_or(getmask(a), getmask(b))
- d1 = filled(a)
- d2 = filled(b)
- x = filled(array(d1, copy=0, mask=m), fill_value).astype(float)
- y = filled(array(d2, copy=0, mask=m), 1).astype(float)
- d = umath.less_equal(umath.absolute(x-y), atol + rtol * umath.absolute(y))
- return fromnumeric.alltrue(fromnumeric.ravel(d))
-
-def allequal (a, b, fill_value=1):
- """
- True if all entries of a and b are equal, using
- fill_value as a truth value where either or both are masked.
- """
- m = mask_or(getmask(a), getmask(b))
- if m is nomask:
- x = filled(a)
- y = filled(b)
- d = umath.equal(x, y)
- return fromnumeric.alltrue(fromnumeric.ravel(d))
- elif fill_value:
- x = filled(a)
- y = filled(b)
- d = umath.equal(x, y)
- dm = array(d, mask=m, copy=0)
- return fromnumeric.alltrue(fromnumeric.ravel(filled(dm, 1)))
- else:
- return 0
-
-def masked_values (data, value, rtol=1.e-5, atol=1.e-8, copy=1):
- """
- masked_values(data, value, rtol=1.e-5, atol=1.e-8)
- Create a masked array; mask is nomask if possible.
- If copy==0, and otherwise possible, result
- may share data values with original array.
- Let d = filled(data, value). Returns d
- masked where abs(data-value)<= atol + rtol * abs(value)
- if d is of a floating point type. Otherwise returns
- masked_object(d, value, copy)
- """
- abs = umath.absolute
- d = filled(data, value)
- if issubclass(d.dtype.type, numeric.floating):
- m = umath.less_equal(abs(d-value), atol+rtol*abs(value))
- m = make_mask(m, flag=1)
- return array(d, mask = m, copy=copy,
- fill_value=value)
- else:
- return masked_object(d, value, copy=copy)
-
-def masked_object (data, value, copy=1):
- "Create array masked where exactly data equal to value"
- d = filled(data, value)
- dm = make_mask(umath.equal(d, value), flag=1)
- return array(d, mask=dm, copy=copy, fill_value=value)
-
-def arange(start, stop=None, step=1, dtype=None):
- """Just like range() except it returns a array whose type can be specified
- by the keyword argument dtype.
- """
- return array(numeric.arange(start, stop, step, dtype))
-
-arrayrange = arange
-
-def fromstring (s, t):
- "Construct a masked array from a string. Result will have no mask."
- return masked_array(numeric.fromstring(s, t))
-
-def left_shift (a, n):
- "Left shift n bits"
- m = getmask(a)
- if m is nomask:
- d = umath.left_shift(filled(a), n)
- return masked_array(d)
- else:
- d = umath.left_shift(filled(a, 0), n)
- return masked_array(d, m)
-
-def right_shift (a, n):
- "Right shift n bits"
- m = getmask(a)
- if m is nomask:
- d = umath.right_shift(filled(a), n)
- return masked_array(d)
- else:
- d = umath.right_shift(filled(a, 0), n)
- return masked_array(d, m)
-
-def resize (a, new_shape):
- """resize(a, new_shape) returns a new array with the specified shape.
- The original array's total size can be any size."""
- m = getmask(a)
- if m is not nomask:
- m = fromnumeric.resize(m, new_shape)
- result = array(fromnumeric.resize(filled(a), new_shape), mask=m)
- result.set_fill_value(get_fill_value(a))
- return result
-
-def new_repeat(a, repeats, axis=None):
- """repeat elements of a repeats times along axis
- repeats is a sequence of length a.shape[axis]
- telling how many times to repeat each element.
- """
- af = filled(a)
- if isinstance(repeats, int):
- if axis is None:
- num = af.size
- else:
- num = af.shape[axis]
- repeats = tuple([repeats]*num)
-
- m = getmask(a)
- if m is not nomask:
- m = fromnumeric.repeat(m, repeats, axis)
- d = fromnumeric.repeat(af, repeats, axis)
- result = masked_array(d, m)
- result.set_fill_value(get_fill_value(a))
- return result
-
-
-
-def identity(n):
- """identity(n) returns the identity matrix of shape n x n.
- """
- return array(numeric.identity(n))
-
-def indices (dimensions, dtype=None):
- """indices(dimensions,dtype=None) returns an array representing a grid
- of indices with row-only, and column-only variation.
- """
- return array(numeric.indices(dimensions, dtype))
-
-def zeros (shape, dtype=float):
- """zeros(n, dtype=float) =
- an array of all zeros of the given length or shape."""
- return array(numeric.zeros(shape, dtype))
-
-def ones (shape, dtype=float):
- """ones(n, dtype=float) =
- an array of all ones of the given length or shape."""
- return array(numeric.ones(shape, dtype))
-
-def count (a, axis = None):
- "Count of the non-masked elements in a, or along a certain axis."
- a = masked_array(a)
- return a.count(axis)
-
-def power (a, b, third=None):
- "a**b"
- if third is not None:
- raise MAError("3-argument power not supported.")
- ma = getmask(a)
- mb = getmask(b)
- m = mask_or(ma, mb)
- fa = filled(a, 1)
- fb = filled(b, 1)
- if fb.dtype.char in typecodes["Integer"]:
- return masked_array(umath.power(fa, fb), m)
- md = make_mask(umath.less(fa, 0), flag=1)
- m = mask_or(m, md)
- if m is nomask:
- return masked_array(umath.power(fa, fb))
- else:
- fa = numeric.where(m, 1, fa)
- return masked_array(umath.power(fa, fb), m)
-
-def masked_array (a, mask=nomask, fill_value=None):
- """masked_array(a, mask=nomask) =
- array(a, mask=mask, copy=0, fill_value=fill_value)
- """
- return array(a, mask=mask, copy=0, fill_value=fill_value)
-
-def sum (target, axis=None, dtype=None):
- if axis is None:
- target = ravel(target)
- axis = 0
- return add.reduce(target, axis, dtype)
-
-def product (target, axis=None, dtype=None):
- if axis is None:
- target = ravel(target)
- axis = 0
- return multiply.reduce(target, axis, dtype)
-
-def new_average (a, axis=None, weights=None, returned = 0):
- """average(a, axis=None, weights=None)
- Computes average along indicated axis.
- If axis is None, average over the entire array
- Inputs can be integer or floating types; result is of type float.
-
- If weights are given, result is sum(a*weights,axis=0)/(sum(weights,axis=0)*1.0)
- weights must have a's shape or be the 1-d with length the size
- of a in the given axis.
-
- If returned, return a tuple: the result and the sum of the weights
- or count of values. Results will have the same shape.
-
- masked values in the weights will be set to 0.0
- """
- a = masked_array(a)
- mask = a.mask
- ash = a.shape
- if ash == ():
- ash = (1,)
- if axis is None:
- if mask is nomask:
- if weights is None:
- n = add.reduce(a.raw_data().ravel())
- d = reduce(lambda x, y: x * y, ash, 1.0)
- else:
- w = filled(weights, 0.0).ravel()
- n = umath.add.reduce(a.raw_data().ravel() * w)
- d = umath.add.reduce(w)
- del w
- else:
- if weights is None:
- n = add.reduce(a.ravel())
- w = fromnumeric.choose(mask, (1.0, 0.0)).ravel()
- d = umath.add.reduce(w)
- del w
- else:
- w = array(filled(weights, 0.0), float, mask=mask).ravel()
- n = add.reduce(a.ravel() * w)
- d = add.reduce(w)
- del w
- else:
- if mask is nomask:
- if weights is None:
- d = ash[axis] * 1.0
- n = umath.add.reduce(a.raw_data(), axis)
- else:
- w = filled(weights, 0.0)
- wsh = w.shape
- if wsh == ():
- wsh = (1,)
- if wsh == ash:
- w = numeric.array(w, float, copy=0)
- n = add.reduce(a*w, axis)
- d = add.reduce(w, axis)
- del w
- elif wsh == (ash[axis],):
- r = [newaxis]*len(ash)
- r[axis] = slice(None, None, 1)
- w = eval ("w["+ repr(tuple(r)) + "] * ones(ash, float)")
- n = add.reduce(a*w, axis)
- d = add.reduce(w, axis)
- del w, r
- else:
- raise ValueError('average: weights wrong shape.')
- else:
- if weights is None:
- n = add.reduce(a, axis)
- w = numeric.choose(mask, (1.0, 0.0))
- d = umath.add.reduce(w, axis)
- del w
- else:
- w = filled(weights, 0.0)
- wsh = w.shape
- if wsh == ():
- wsh = (1,)
- if wsh == ash:
- w = array(w, float, mask=mask, copy=0)
- n = add.reduce(a*w, axis)
- d = add.reduce(w, axis)
- elif wsh == (ash[axis],):
- r = [newaxis]*len(ash)
- r[axis] = slice(None, None, 1)
- w = eval ("w["+ repr(tuple(r)) + "] * masked_array(ones(ash, float), mask)")
- n = add.reduce(a*w, axis)
- d = add.reduce(w, axis)
- else:
- raise ValueError('average: weights wrong shape.')
- del w
- #print n, d, repr(mask), repr(weights)
- if n is masked or d is masked: return masked
- result = divide (n, d)
- del n
-
- if isinstance(result, MaskedArray):
- result.unmask()
- if returned:
- if not isinstance(d, MaskedArray):
- d = masked_array(d)
- if not d.shape == result.shape:
- d = ones(result.shape, float) * d
- d.unmask()
- if returned:
- return result, d
- else:
- return result
-
-def where (condition, x, y):
- """where(condition, x, y) is x where condition is nonzero, y otherwise.
- condition must be convertible to an integer array.
- Answer is always the shape of condition.
- The type depends on x and y. It is integer if both x and y are
- the value masked.
- """
- fc = filled(not_equal(condition, 0), 0)
- xv = filled(x)
- xm = getmask(x)
- yv = filled(y)
- ym = getmask(y)
- d = numeric.choose(fc, (yv, xv))
- md = numeric.choose(fc, (ym, xm))
- m = getmask(condition)
- m = make_mask(mask_or(m, md), copy=0, flag=1)
- return masked_array(d, m)
-
-def choose (indices, t, out=None, mode='raise'):
- "Returns array shaped like indices with elements chosen from t"
- def fmask (x):
- if x is masked: return 1
- return filled(x)
- def nmask (x):
- if x is masked: return 1
- m = getmask(x)
- if m is nomask: return 0
- return m
- c = filled(indices, 0)
- masks = [nmask(x) for x in t]
- a = [fmask(x) for x in t]
- d = numeric.choose(c, a)
- m = numeric.choose(c, masks)
- m = make_mask(mask_or(m, getmask(indices)), copy=0, flag=1)
- return masked_array(d, m)
-
-def masked_where(condition, x, copy=1):
- """Return x as an array masked where condition is true.
- Also masked where x or condition masked.
- """
- cm = filled(condition, 1)
- m = mask_or(getmask(x), cm)
- return array(filled(x), copy=copy, mask=m)
-
-def masked_greater(x, value, copy=1):
- "masked_greater(x, value) = x masked where x > value"
- return masked_where(greater(x, value), x, copy)
-
-def masked_greater_equal(x, value, copy=1):
- "masked_greater_equal(x, value) = x masked where x >= value"
- return masked_where(greater_equal(x, value), x, copy)
-
-def masked_less(x, value, copy=1):
- "masked_less(x, value) = x masked where x < value"
- return masked_where(less(x, value), x, copy)
-
-def masked_less_equal(x, value, copy=1):
- "masked_less_equal(x, value) = x masked where x <= value"
- return masked_where(less_equal(x, value), x, copy)
-
-def masked_not_equal(x, value, copy=1):
- "masked_not_equal(x, value) = x masked where x != value"
- d = filled(x, 0)
- c = umath.not_equal(d, value)
- m = mask_or(c, getmask(x))
- return array(d, mask=m, copy=copy)
-
-def masked_equal(x, value, copy=1):
- """masked_equal(x, value) = x masked where x == value
- For floating point consider masked_values(x, value) instead.
- """
- d = filled(x, 0)
- c = umath.equal(d, value)
- m = mask_or(c, getmask(x))
- return array(d, mask=m, copy=copy)
-
-def masked_inside(x, v1, v2, copy=1):
- """x with mask of all values of x that are inside [v1,v2]
- v1 and v2 can be given in either order.
- """
- if v2 < v1:
- t = v2
- v2 = v1
- v1 = t
- d = filled(x, 0)
- c = umath.logical_and(umath.less_equal(d, v2), umath.greater_equal(d, v1))
- m = mask_or(c, getmask(x))
- return array(d, mask = m, copy=copy)
-
-def masked_outside(x, v1, v2, copy=1):
- """x with mask of all values of x that are outside [v1,v2]
- v1 and v2 can be given in either order.
- """
- if v2 < v1:
- t = v2
- v2 = v1
- v1 = t
- d = filled(x, 0)
- c = umath.logical_or(umath.less(d, v1), umath.greater(d, v2))
- m = mask_or(c, getmask(x))
- return array(d, mask = m, copy=copy)
-
-def reshape (a, *newshape):
- "Copy of a with a new shape."
- m = getmask(a)
- d = filled(a).reshape(*newshape)
- if m is nomask:
- return masked_array(d)
- else:
- return masked_array(d, mask=numeric.reshape(m, *newshape))
-
-def ravel (a):
- "a as one-dimensional, may share data and mask"
- m = getmask(a)
- d = fromnumeric.ravel(filled(a))
- if m is nomask:
- return masked_array(d)
- else:
- return masked_array(d, mask=numeric.ravel(m))
-
-def concatenate (arrays, axis=0):
- "Concatenate the arrays along the given axis"
- d = []
- for x in arrays:
- d.append(filled(x))
- d = numeric.concatenate(d, axis)
- for x in arrays:
- if getmask(x) is not nomask: break
- else:
- return masked_array(d)
- dm = []
- for x in arrays:
- dm.append(getmaskarray(x))
- dm = numeric.concatenate(dm, axis)
- return masked_array(d, mask=dm)
-
-def swapaxes (a, axis1, axis2):
- m = getmask(a)
- d = masked_array(a).data
- if m is nomask:
- return masked_array(data=numeric.swapaxes(d, axis1, axis2))
- else:
- return masked_array(data=numeric.swapaxes(d, axis1, axis2),
- mask=numeric.swapaxes(m, axis1, axis2),)
-
-
-def new_take (a, indices, axis=None, out=None, mode='raise'):
- "returns selection of items from a."
- m = getmask(a)
- # d = masked_array(a).raw_data()
- d = masked_array(a).data
- if m is nomask:
- return masked_array(numeric.take(d, indices, axis))
- else:
- return masked_array(numeric.take(d, indices, axis),
- mask = numeric.take(m, indices, axis))
-
-def transpose(a, axes=None):
- "reorder dimensions per tuple axes"
- m = getmask(a)
- d = filled(a)
- if m is nomask:
- return masked_array(numeric.transpose(d, axes))
- else:
- return masked_array(numeric.transpose(d, axes),
- mask = numeric.transpose(m, axes))
-
-
-def put(a, indices, values, mode='raise'):
- """sets storage-indexed locations to corresponding values.
-
- Values and indices are filled if necessary.
-
- """
- d = a.raw_data()
- ind = filled(indices)
- v = filled(values)
- numeric.put (d, ind, v)
- m = getmask(a)
- if m is not nomask:
- a.unshare_mask()
- numeric.put(a.raw_mask(), ind, 0)
-
-def putmask(a, mask, values):
- "putmask(a, mask, values) sets a where mask is true."
- if mask is nomask:
- return
- numeric.putmask(a.raw_data(), mask, values)
- m = getmask(a)
- if m is nomask: return
- a.unshare_mask()
- numeric.putmask(a.raw_mask(), mask, 0)
-
-def inner(a, b):
- """inner(a,b) returns the dot product of two arrays, which has
- shape a.shape[:-1] + b.shape[:-1] with elements computed by summing the
- product of the elements from the last dimensions of a and b.
- Masked elements are replace by zeros.
- """
- fa = filled(a, 0)
- fb = filled(b, 0)
- if len(fa.shape) == 0: fa.shape = (1,)
- if len(fb.shape) == 0: fb.shape = (1,)
- return masked_array(numeric.inner(fa, fb))
-
-innerproduct = inner
-
-def outer(a, b):
- """outer(a,b) = {a[i]*b[j]}, has shape (len(a),len(b))"""
- fa = filled(a, 0).ravel()
- fb = filled(b, 0).ravel()
- d = numeric.outer(fa, fb)
- ma = getmask(a)
- mb = getmask(b)
- if ma is nomask and mb is nomask:
- return masked_array(d)
- ma = getmaskarray(a)
- mb = getmaskarray(b)
- m = make_mask(1-numeric.outer(1-ma, 1-mb), copy=0)
- return masked_array(d, m)
-
-outerproduct = outer
-
-def dot(a, b):
- """dot(a,b) returns matrix-multiplication between a and b. The product-sum
- is over the last dimension of a and the second-to-last dimension of b.
- Masked values are replaced by zeros. See also innerproduct.
- """
- return innerproduct(filled(a, 0), numeric.swapaxes(filled(b, 0), -1, -2))
-
-def compress(condition, x, dimension=-1, out=None):
- """Select those parts of x for which condition is true.
- Masked values in condition are considered false.
- """
- c = filled(condition, 0)
- m = getmask(x)
- if m is not nomask:
- m = numeric.compress(c, m, dimension)
- d = numeric.compress(c, filled(x), dimension)
- return masked_array(d, m)
-
-class _minimum_operation:
- "Object to calculate minima"
- def __init__ (self):
- """minimum(a, b) or minimum(a)
- In one argument case returns the scalar minimum.
- """
- pass
-
- def __call__ (self, a, b=None):
- "Execute the call behavior."
- if b is None:
- m = getmask(a)
- if m is nomask:
- d = amin(filled(a).ravel())
- return d
- ac = a.compressed()
- if len(ac) == 0:
- return masked
- else:
- return amin(ac.raw_data())
- else:
- return where(less(a, b), a, b)
-
- def reduce (self, target, axis=0):
- """Reduce target along the given axis."""
- m = getmask(target)
- if m is nomask:
- t = filled(target)
- return masked_array (umath.minimum.reduce (t, axis))
- else:
- t = umath.minimum.reduce(filled(target, minimum_fill_value(target)), axis)
- m = umath.logical_and.reduce(m, axis)
- return masked_array(t, m, get_fill_value(target))
-
- def outer (self, a, b):
- "Return the function applied to the outer product of a and b."
- ma = getmask(a)
- mb = getmask(b)
- if ma is nomask and mb is nomask:
- m = nomask
- else:
- ma = getmaskarray(a)
- mb = getmaskarray(b)
- m = logical_or.outer(ma, mb)
- d = umath.minimum.outer(filled(a), filled(b))
- return masked_array(d, m)
-
-minimum = _minimum_operation ()
-
-class _maximum_operation:
- "Object to calculate maxima"
- def __init__ (self):
- """maximum(a, b) or maximum(a)
- In one argument case returns the scalar maximum.
- """
- pass
-
- def __call__ (self, a, b=None):
- "Execute the call behavior."
- if b is None:
- m = getmask(a)
- if m is nomask:
- d = amax(filled(a).ravel())
- return d
- ac = a.compressed()
- if len(ac) == 0:
- return masked
- else:
- return amax(ac.raw_data())
- else:
- return where(greater(a, b), a, b)
-
- def reduce (self, target, axis=0):
- """Reduce target along the given axis."""
- m = getmask(target)
- if m is nomask:
- t = filled(target)
- return masked_array (umath.maximum.reduce (t, axis))
- else:
- t = umath.maximum.reduce(filled(target, maximum_fill_value(target)), axis)
- m = umath.logical_and.reduce(m, axis)
- return masked_array(t, m, get_fill_value(target))
-
- def outer (self, a, b):
- "Return the function applied to the outer product of a and b."
- ma = getmask(a)
- mb = getmask(b)
- if ma is nomask and mb is nomask:
- m = nomask
- else:
- ma = getmaskarray(a)
- mb = getmaskarray(b)
- m = logical_or.outer(ma, mb)
- d = umath.maximum.outer(filled(a), filled(b))
- return masked_array(d, m)
-
-maximum = _maximum_operation ()
-
-def sort (x, axis = -1, fill_value=None):
- """If x does not have a mask, return a masked array formed from the
- result of numeric.sort(x, axis).
- Otherwise, fill x with fill_value. Sort it.
- Set a mask where the result is equal to fill_value.
- Note that this may have unintended consequences if the data contains the
- fill value at a non-masked site.
-
- If fill_value is not given the default fill value for x's type will be
- used.
- """
- if fill_value is None:
- fill_value = default_fill_value (x)
- d = filled(x, fill_value)
- s = fromnumeric.sort(d, axis)
- if getmask(x) is nomask:
- return masked_array(s)
- return masked_values(s, fill_value, copy=0)
-
-def diagonal(a, k = 0, axis1=0, axis2=1):
- """diagonal(a,k=0,axis1=0, axis2=1) = the k'th diagonal of a"""
- d = fromnumeric.diagonal(filled(a), k, axis1, axis2)
- m = getmask(a)
- if m is nomask:
- return masked_array(d, m)
- else:
- return masked_array(d, fromnumeric.diagonal(m, k, axis1, axis2))
-
-def trace (a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
- """trace(a,offset=0, axis1=0, axis2=1) returns the sum along diagonals
- (defined by the last two dimenions) of the array.
- """
- return diagonal(a, offset, axis1, axis2).sum(dtype=dtype)
-
-def argsort (x, axis = -1, out=None, fill_value=None):
- """Treating masked values as if they have the value fill_value,
- return sort indices for sorting along given axis.
- if fill_value is None, use get_fill_value(x)
- Returns a numpy array.
- """
- d = filled(x, fill_value)
- return fromnumeric.argsort(d, axis)
-
-def argmin (x, axis = -1, out=None, fill_value=None):
- """Treating masked values as if they have the value fill_value,
- return indices for minimum values along given axis.
- if fill_value is None, use get_fill_value(x).
- Returns a numpy array if x has more than one dimension.
- Otherwise, returns a scalar index.
- """
- d = filled(x, fill_value)
- return fromnumeric.argmin(d, axis)
-
-def argmax (x, axis = -1, out=None, fill_value=None):
- """Treating masked values as if they have the value fill_value,
- return sort indices for maximum along given axis.
- if fill_value is None, use -get_fill_value(x) if it exists.
- Returns a numpy array if x has more than one dimension.
- Otherwise, returns a scalar index.
- """
- if fill_value is None:
- fill_value = default_fill_value (x)
- try:
- fill_value = - fill_value
- except:
- pass
- d = filled(x, fill_value)
- return fromnumeric.argmax(d, axis)
-
-def fromfunction (f, s):
- """apply f to s to create array as in umath."""
- return masked_array(numeric.fromfunction(f, s))
-
-def asarray(data, dtype=None):
- """asarray(data, dtype) = array(data, dtype, copy=0)
- """
- if isinstance(data, MaskedArray) and \
- (dtype is None or dtype == data.dtype):
- return data
- return array(data, dtype=dtype, copy=0)
-
-# Add methods to support ndarray interface
-# XXX: I is better to to change the masked_*_operation adaptors
-# XXX: to wrap ndarray methods directly to create ma.array methods.
-
-def _m(f):
- return types.MethodType(f, None, array)
-
-def not_implemented(*args, **kwds):
- raise NotImplementedError("not yet implemented for numpy.ma arrays")
-
-array.all = _m(alltrue)
-array.any = _m(sometrue)
-array.argmax = _m(argmax)
-array.argmin = _m(argmin)
-array.argsort = _m(argsort)
-array.base = property(_m(not_implemented))
-array.byteswap = _m(not_implemented)
-
-def _choose(self, *args, **kwds):
- return choose(self, args)
-array.choose = _m(_choose)
-del _choose
-
-def _clip(self,a_min,a_max,out=None):
- return MaskedArray(data = self.data.clip(asarray(a_min).data,
- asarray(a_max).data),
- mask = mask_or(self.mask,
- mask_or(getmask(a_min), getmask(a_max))))
-array.clip = _m(_clip)
-
-def _compress(self, cond, axis=None, out=None):
- return compress(cond, self, axis)
-array.compress = _m(_compress)
-del _compress
-
-array.conj = array.conjugate = _m(conjugate)
-array.copy = _m(not_implemented)
-
-def _cumprod(self, axis=None, dtype=None, out=None):
- m = self.mask
- if m is not nomask:
- m = umath.logical_or.accumulate(self.mask, axis)
- return MaskedArray(data = self.filled(1).cumprod(axis, dtype), mask=m)
-array.cumprod = _m(_cumprod)
-
-def _cumsum(self, axis=None, dtype=None, out=None):
- m = self.mask
- if m is not nomask:
- m = umath.logical_or.accumulate(self.mask, axis)
- return MaskedArray(data=self.filled(0).cumsum(axis, dtype), mask=m)
-array.cumsum = _m(_cumsum)
-
-array.diagonal = _m(diagonal)
-array.dump = _m(not_implemented)
-array.dumps = _m(not_implemented)
-array.fill = _m(not_implemented)
-array.flags = property(_m(not_implemented))
-array.flatten = _m(ravel)
-array.getfield = _m(not_implemented)
-
-def _max(a, axis=None, out=None):
- if out is not None:
- raise TypeError("Output arrays Unsupported for masked arrays")
- if axis is None:
- return maximum(a)
- else:
- return maximum.reduce(a, axis)
-array.max = _m(_max)
-del _max
-def _min(a, axis=None, out=None):
- if out is not None:
- raise TypeError("Output arrays Unsupported for masked arrays")
- if axis is None:
- return minimum(a)
- else:
- return minimum.reduce(a, axis)
-array.min = _m(_min)
-del _min
-array.mean = _m(new_average)
-array.nbytes = property(_m(not_implemented))
-array.newbyteorder = _m(not_implemented)
-array.nonzero = _m(nonzero)
-array.prod = _m(product)
-
-def _ptp(a,axis=None,out=None):
- return a.max(axis, out)-a.min(axis)
-array.ptp = _m(_ptp)
-array.repeat = _m(new_repeat)
-array.resize = _m(resize)
-array.searchsorted = _m(not_implemented)
-array.setfield = _m(not_implemented)
-array.setflags = _m(not_implemented)
-array.sort = _m(not_implemented) # NB: ndarray.sort is inplace
-
-def _squeeze(self):
- try:
- result = MaskedArray(data = self.data.squeeze(),
- mask = self.mask.squeeze())
- except AttributeError:
- result = _wrapit(self, 'squeeze')
- return result
-array.squeeze = _m(_squeeze)
-
-array.strides = property(_m(not_implemented))
-array.sum = _m(sum)
-def _swapaxes(self, axis1, axis2):
- return MaskedArray(data = self.data.swapaxes(axis1, axis2),
- mask = self.mask.swapaxes(axis1, axis2))
-array.swapaxes = _m(_swapaxes)
-array.take = _m(new_take)
-array.tofile = _m(not_implemented)
-array.trace = _m(trace)
-array.transpose = _m(transpose)
-
-def _var(self,axis=None,dtype=None, out=None):
- if axis is None:
- return numeric.asarray(self.compressed()).var()
- a = self.swapaxes(axis, 0)
- a = a - a.mean(axis=0)
- a *= a
- a /= a.count(axis=0)
- return a.swapaxes(0, axis).sum(axis)
-def _std(self,axis=None, dtype=None, out=None):
- return (self.var(axis, dtype))**0.5
-array.var = _m(_var)
-array.std = _m(_std)
-
-array.view = _m(not_implemented)
-array.round = _m(around)
-del _m, not_implemented
-
-
-masked = MaskedArray(0, int, mask=1)
-
-def repeat(a, repeats, axis=0):
- return new_repeat(a, repeats, axis)
-
-def average(a, axis=0, weights=None, returned=0):
- return new_average(a, axis, weights, returned)
-
-def take(a, indices, axis=0):
- return new_take(a, indices, axis)
diff --git a/numpy/oldnumeric/matrix.py b/numpy/oldnumeric/matrix.py
deleted file mode 100644
index 35c795e9d..000000000
--- a/numpy/oldnumeric/matrix.py
+++ /dev/null
@@ -1,70 +0,0 @@
-"""This module is for compatibility only.
-
-"""
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['UserArray', 'squeeze', 'Matrix', 'asarray', 'dot', 'k', 'Numeric', 'LinearAlgebra', 'identity', 'multiply', 'types', 'string']
-
-import types
-from .user_array import UserArray, asarray
-import numpy.oldnumeric as Numeric
-from numpy.oldnumeric import dot, identity, multiply
-import numpy.oldnumeric.linear_algebra as LinearAlgebra
-from numpy import matrix as Matrix, squeeze
-
-# Hidden names that will be the same.
-
-_table = [None]*256
-for k in range(256):
- _table[k] = chr(k)
-_table = ''.join(_table)
-
-_numchars = '0123456789.-+jeEL'
-_todelete = []
-for k in _table:
- if k not in _numchars:
- _todelete.append(k)
-_todelete = ''.join(_todelete)
-
-
-def _eval(astr):
- return eval(astr.translate(_table, _todelete))
-
-def _convert_from_string(data):
- data.find
- rows = data.split(';')
- newdata = []
- count = 0
- for row in rows:
- trow = row.split(',')
- newrow = []
- for col in trow:
- temp = col.split()
- newrow.extend(map(_eval, temp))
- if count == 0:
- Ncols = len(newrow)
- elif len(newrow) != Ncols:
- raise ValueError("Rows not the same size.")
- count += 1
- newdata.append(newrow)
- return newdata
-
-
-_lkup = {'0':'000',
- '1':'001',
- '2':'010',
- '3':'011',
- '4':'100',
- '5':'101',
- '6':'110',
- '7':'111'}
-
-def _binary(num):
- ostr = oct(num)
- bin = ''
- for ch in ostr[1:]:
- bin += _lkup[ch]
- ind = 0
- while bin[ind] == '0':
- ind += 1
- return bin[ind:]
diff --git a/numpy/oldnumeric/misc.py b/numpy/oldnumeric/misc.py
deleted file mode 100644
index beaafd503..000000000
--- a/numpy/oldnumeric/misc.py
+++ /dev/null
@@ -1,37 +0,0 @@
-"""Functions that already have the correct syntax or miscellaneous functions
-
-"""
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['sort', 'copy_reg', 'clip', 'rank',
- 'sign', 'shape', 'types', 'allclose', 'size',
- 'choose', 'swapaxes', 'array_str',
- 'pi', 'math', 'concatenate', 'putmask', 'put',
- 'around', 'vdot', 'transpose', 'array2string', 'diagonal',
- 'searchsorted', 'copy', 'resize',
- 'array_repr', 'e', 'StringIO', 'pickle',
- 'argsort', 'convolve', 'cross_correlate',
- 'dot', 'outerproduct', 'innerproduct', 'insert']
-
-import types
-import pickle
-import math
-import copy
-import sys
-
-if sys.version_info[0] >= 3:
- import copyreg as copy_reg
- from io import BytesIO as StringIO
-else:
- import copy_reg
- from StringIO import StringIO
-
-from numpy import sort, clip, rank, sign, shape, putmask, allclose, size,\
- choose, swapaxes, array_str, array_repr, e, pi, put, \
- resize, around, concatenate, vdot, transpose, \
- diagonal, searchsorted, argsort, convolve, dot, \
- outer as outerproduct, inner as innerproduct, \
- correlate as cross_correlate, \
- place as insert
-
-from .array_printer import array2string
diff --git a/numpy/oldnumeric/mlab.py b/numpy/oldnumeric/mlab.py
deleted file mode 100644
index 2b357612c..000000000
--- a/numpy/oldnumeric/mlab.py
+++ /dev/null
@@ -1,128 +0,0 @@
-"""This module is for compatibility only. All functions are defined elsewhere.
-
-"""
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle',
- 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort',
- 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud',
- 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc',
- 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean']
-
-import numpy.oldnumeric.linear_algebra as LinearAlgebra
-import numpy.oldnumeric.random_array as RandomArray
-from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \
- angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \
- diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \
- amax as _Nmax, amin as _Nmin, blackman, bartlett, \
- squeeze, sinc, median, fliplr, mean as _Nmean, transpose
-
-from numpy.linalg import eig, svd
-from numpy.random import rand, randn
-import numpy as np
-
-from .typeconv import convtypecode
-
-def eye(N, M=None, k=0, typecode=None, dtype=None):
- """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones,
- and everything else is zeros.
- """
- dtype = convtypecode(typecode, dtype)
- if M is None: M = N
- m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)), -k)
- if m.dtype != dtype:
- return m.astype(dtype)
-
-def tri(N, M=None, k=0, typecode=None, dtype=None):
- """ returns a N-by-M array where all the diagonals starting from
- lower left corner up to the k-th are all ones.
- """
- dtype = convtypecode(typecode, dtype)
- if M is None: M = N
- m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)), -k)
- if m.dtype != dtype:
- return m.astype(dtype)
-
-def trapz(y, x=None, axis=-1):
- return _Ntrapz(y, x, axis=axis)
-
-def ptp(x, axis=0):
- return _Nptp(x, axis)
-
-def cumprod(x, axis=0):
- return _Ncumprod(x, axis)
-
-def max(x, axis=0):
- return _Nmax(x, axis)
-
-def min(x, axis=0):
- return _Nmin(x, axis)
-
-def prod(x, axis=0):
- return _Nprod(x, axis)
-
-def std(x, axis=0):
- N = asarray(x).shape[axis]
- return _Nstd(x, axis)*sqrt(N/(N-1.))
-
-def mean(x, axis=0):
- return _Nmean(x, axis)
-
-# This is exactly the same cov function as in MLab
-def cov(m, y=None, rowvar=0, bias=0):
- if y is None:
- y = m
- else:
- y = y
- if rowvar:
- m = transpose(m)
- y = transpose(y)
- if (m.shape[0] == 1):
- m = transpose(m)
- if (y.shape[0] == 1):
- y = transpose(y)
- N = m.shape[0]
- if (y.shape[0] != N):
- raise ValueError("x and y must have the same number of observations")
- m = m - _Nmean(m, axis=0)
- y = y - _Nmean(y, axis=0)
- if bias:
- fact = N*1.0
- else:
- fact = N-1.0
- return squeeze(dot(transpose(m), conjugate(y)) / fact)
-
-from numpy import sqrt, multiply
-def corrcoef(x, y=None):
- c = cov(x, y)
- d = diag(c)
- return c/sqrt(multiply.outer(d, d))
-
-from .compat import *
-from .functions import *
-from .precision import *
-from .ufuncs import *
-from .misc import *
-
-from . import compat
-from . import precision
-from . import functions
-from . import misc
-from . import ufuncs
-
-import numpy
-__version__ = numpy.__version__
-del numpy
-
-__all__ += ['__version__']
-__all__ += compat.__all__
-__all__ += precision.__all__
-__all__ += functions.__all__
-__all__ += ufuncs.__all__
-__all__ += misc.__all__
-
-del compat
-del functions
-del precision
-del ufuncs
-del misc
diff --git a/numpy/oldnumeric/precision.py b/numpy/oldnumeric/precision.py
deleted file mode 100644
index d7b0344ee..000000000
--- a/numpy/oldnumeric/precision.py
+++ /dev/null
@@ -1,174 +0,0 @@
-"""
-
-Lifted from Precision.py. This is for compatibility only.
-
-The character strings are still for "new" NumPy
-which is the only Incompatibility with Numeric
-
-"""
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['Character', 'Complex', 'Float',
- 'PrecisionError', 'PyObject', 'Int', 'UInt',
- 'UnsignedInt', 'UnsignedInteger', 'string', 'typecodes', 'zeros']
-
-from .functions import zeros
-import string # for backwards compatibility
-
-typecodes = {'Character':'c', 'Integer':'bhil', 'UnsignedInteger':'BHIL', 'Float':'fd', 'Complex':'FD'}
-
-def _get_precisions(typecodes):
- lst = []
- for t in typecodes:
- lst.append( (zeros( (1,), t ).itemsize*8, t) )
- return lst
-
-def _fill_table(typecodes, table={}):
- for key, value in typecodes.items():
- table[key] = _get_precisions(value)
- return table
-
-_code_table = _fill_table(typecodes)
-
-class PrecisionError(Exception):
- pass
-
-def _lookup(table, key, required_bits):
- lst = table[key]
- for bits, typecode in lst:
- if bits >= required_bits:
- return typecode
- raise PrecisionError(key + " of " + str(required_bits) +
- " bits not available on this system")
-
-Character = 'c'
-
-try:
- UnsignedInt8 = _lookup(_code_table, "UnsignedInteger", 8)
- UInt8 = UnsignedInt8
- __all__.extend(['UnsignedInt8', 'UInt8'])
-except(PrecisionError):
- pass
-try:
- UnsignedInt16 = _lookup(_code_table, "UnsignedInteger", 16)
- UInt16 = UnsignedInt16
- __all__.extend(['UnsignedInt16', 'UInt16'])
-except(PrecisionError):
- pass
-try:
- UnsignedInt32 = _lookup(_code_table, "UnsignedInteger", 32)
- UInt32 = UnsignedInt32
- __all__.extend(['UnsignedInt32', 'UInt32'])
-except(PrecisionError):
- pass
-try:
- UnsignedInt64 = _lookup(_code_table, "UnsignedInteger", 64)
- UInt64 = UnsignedInt64
- __all__.extend(['UnsignedInt64', 'UInt64'])
-except(PrecisionError):
- pass
-try:
- UnsignedInt128 = _lookup(_code_table, "UnsignedInteger", 128)
- UInt128 = UnsignedInt128
- __all__.extend(['UnsignedInt128', 'UInt128'])
-except(PrecisionError):
- pass
-UInt = UnsignedInt = UnsignedInteger = 'u'
-
-try:
- Int0 = _lookup(_code_table, 'Integer', 0)
- __all__.append('Int0')
-except(PrecisionError):
- pass
-try:
- Int8 = _lookup(_code_table, 'Integer', 8)
- __all__.append('Int8')
-except(PrecisionError):
- pass
-try:
- Int16 = _lookup(_code_table, 'Integer', 16)
- __all__.append('Int16')
-except(PrecisionError):
- pass
-try:
- Int32 = _lookup(_code_table, 'Integer', 32)
- __all__.append('Int32')
-except(PrecisionError):
- pass
-try:
- Int64 = _lookup(_code_table, 'Integer', 64)
- __all__.append('Int64')
-except(PrecisionError):
- pass
-try:
- Int128 = _lookup(_code_table, 'Integer', 128)
- __all__.append('Int128')
-except(PrecisionError):
- pass
-Int = 'l'
-
-try:
- Float0 = _lookup(_code_table, 'Float', 0)
- __all__.append('Float0')
-except(PrecisionError):
- pass
-try:
- Float8 = _lookup(_code_table, 'Float', 8)
- __all__.append('Float8')
-except(PrecisionError):
- pass
-try:
- Float16 = _lookup(_code_table, 'Float', 16)
- __all__.append('Float16')
-except(PrecisionError):
- pass
-try:
- Float32 = _lookup(_code_table, 'Float', 32)
- __all__.append('Float32')
-except(PrecisionError):
- pass
-try:
- Float64 = _lookup(_code_table, 'Float', 64)
- __all__.append('Float64')
-except(PrecisionError):
- pass
-try:
- Float128 = _lookup(_code_table, 'Float', 128)
- __all__.append('Float128')
-except(PrecisionError):
- pass
-Float = 'd'
-
-try:
- Complex0 = _lookup(_code_table, 'Complex', 0)
- __all__.append('Complex0')
-except(PrecisionError):
- pass
-try:
- Complex8 = _lookup(_code_table, 'Complex', 16)
- __all__.append('Complex8')
-except(PrecisionError):
- pass
-try:
- Complex16 = _lookup(_code_table, 'Complex', 32)
- __all__.append('Complex16')
-except(PrecisionError):
- pass
-try:
- Complex32 = _lookup(_code_table, 'Complex', 64)
- __all__.append('Complex32')
-except(PrecisionError):
- pass
-try:
- Complex64 = _lookup(_code_table, 'Complex', 128)
- __all__.append('Complex64')
-except(PrecisionError):
- pass
-try:
- Complex128 = _lookup(_code_table, 'Complex', 256)
- __all__.append('Complex128')
-except(PrecisionError):
- pass
-Complex = 'D'
-
-PyObject = 'O'
diff --git a/numpy/oldnumeric/random_array.py b/numpy/oldnumeric/random_array.py
deleted file mode 100644
index c43a49cdb..000000000
--- a/numpy/oldnumeric/random_array.py
+++ /dev/null
@@ -1,269 +0,0 @@
-"""Backward compatible module for RandomArray
-
-"""
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['ArgumentError', 'F', 'beta', 'binomial', 'chi_square', 'exponential',
- 'gamma', 'get_seed', 'mean_var_test', 'multinomial',
- 'multivariate_normal', 'negative_binomial', 'noncentral_F',
- 'noncentral_chi_square', 'normal', 'permutation', 'poisson',
- 'randint', 'random', 'random_integers', 'seed', 'standard_normal',
- 'uniform']
-
-ArgumentError = ValueError
-
-import numpy.random.mtrand as mt
-import numpy as np
-
-def seed(x=0, y=0):
- if (x == 0 or y == 0):
- mt.seed()
- else:
- mt.seed((x, y))
-
-def get_seed():
- raise NotImplementedError(
- "If you want to save the state of the random number generator.\n"
- "Then you should use obj = numpy.random.get_state() followed by.\n"
- "numpy.random.set_state(obj).")
-
-def random(shape=[]):
- "random(n) or random([n, m, ...]) returns array of random numbers"
- if shape == []:
- shape = None
- return mt.random_sample(shape)
-
-def uniform(minimum, maximum, shape=[]):
- """uniform(minimum, maximum, shape=[]) returns array of given shape of random reals
- in given range"""
- if shape == []:
- shape = None
- return mt.uniform(minimum, maximum, shape)
-
-def randint(minimum, maximum=None, shape=[]):
- """randint(min, max, shape=[]) = random integers >=min, < max
- If max not given, random integers >= 0, <min"""
- if not isinstance(minimum, int):
- raise ArgumentError("randint requires first argument integer")
- if maximum is None:
- maximum = minimum
- minimum = 0
- if not isinstance(maximum, int):
- raise ArgumentError("randint requires second argument integer")
- a = ((maximum-minimum)* random(shape))
- if isinstance(a, np.ndarray):
- return minimum + a.astype(np.int)
- else:
- return minimum + int(a)
-
-def random_integers(maximum, minimum=1, shape=[]):
- """random_integers(max, min=1, shape=[]) = random integers in range min-max inclusive"""
- return randint(minimum, maximum+1, shape)
-
-def permutation(n):
- "permutation(n) = a permutation of indices range(n)"
- return mt.permutation(n)
-
-def standard_normal(shape=[]):
- """standard_normal(n) or standard_normal([n, m, ...]) returns array of
- random numbers normally distributed with mean 0 and standard
- deviation 1"""
- if shape == []:
- shape = None
- return mt.standard_normal(shape)
-
-def normal(mean, std, shape=[]):
- """normal(mean, std, n) or normal(mean, std, [n, m, ...]) returns
- array of random numbers randomly distributed with specified mean and
- standard deviation"""
- if shape == []:
- shape = None
- return mt.normal(mean, std, shape)
-
-def multivariate_normal(mean, cov, shape=[]):
- """multivariate_normal(mean, cov) or multivariate_normal(mean, cov, [m, n, ...])
- returns an array containing multivariate normally distributed random numbers
- with specified mean and covariance.
-
- mean must be a 1 dimensional array. cov must be a square two dimensional
- array with the same number of rows and columns as mean has elements.
-
- The first form returns a single 1-D array containing a multivariate
- normal.
-
- The second form returns an array of shape (m, n, ..., cov.shape[0]).
- In this case, output[i,j,...,:] is a 1-D array containing a multivariate
- normal."""
- if shape == []:
- shape = None
- return mt.multivariate_normal(mean, cov, shape)
-
-def exponential(mean, shape=[]):
- """exponential(mean, n) or exponential(mean, [n, m, ...]) returns array
- of random numbers exponentially distributed with specified mean"""
- if shape == []:
- shape = None
- return mt.exponential(mean, shape)
-
-def beta(a, b, shape=[]):
- """beta(a, b) or beta(a, b, [n, m, ...]) returns array of beta distributed random numbers."""
- if shape == []:
- shape = None
- return mt.beta(a, b, shape)
-
-def gamma(a, r, shape=[]):
- """gamma(a, r) or gamma(a, r, [n, m, ...]) returns array of gamma distributed random numbers."""
- if shape == []:
- shape = None
- return mt.gamma(a, r, shape)
-
-def F(dfn, dfd, shape=[]):
- """F(dfn, dfd) or F(dfn, dfd, [n, m, ...]) returns array of F distributed random numbers with dfn degrees of freedom in the numerator and dfd degrees of freedom in the denominator."""
- if shape == []:
- shape = None
- return mt.f(dfn, dfd, shape)
-
-def noncentral_F(dfn, dfd, nconc, shape=[]):
- """noncentral_F(dfn, dfd, nonc) or noncentral_F(dfn, dfd, nonc, [n, m, ...]) returns array of noncentral F distributed random numbers with dfn degrees of freedom in the numerator and dfd degrees of freedom in the denominator, and noncentrality parameter nconc."""
- if shape == []:
- shape = None
- return mt.noncentral_f(dfn, dfd, nconc, shape)
-
-def chi_square(df, shape=[]):
- """chi_square(df) or chi_square(df, [n, m, ...]) returns array of chi squared distributed random numbers with df degrees of freedom."""
- if shape == []:
- shape = None
- return mt.chisquare(df, shape)
-
-def noncentral_chi_square(df, nconc, shape=[]):
- """noncentral_chi_square(df, nconc) or chi_square(df, nconc, [n, m, ...]) returns array of noncentral chi squared distributed random numbers with df degrees of freedom and noncentrality parameter."""
- if shape == []:
- shape = None
- return mt.noncentral_chisquare(df, nconc, shape)
-
-def binomial(trials, p, shape=[]):
- """binomial(trials, p) or binomial(trials, p, [n, m, ...]) returns array of binomially distributed random integers.
-
- trials is the number of trials in the binomial distribution.
- p is the probability of an event in each trial of the binomial distribution."""
- if shape == []:
- shape = None
- return mt.binomial(trials, p, shape)
-
-def negative_binomial(trials, p, shape=[]):
- """negative_binomial(trials, p) or negative_binomial(trials, p, [n, m, ...]) returns
- array of negative binomially distributed random integers.
-
- trials is the number of trials in the negative binomial distribution.
- p is the probability of an event in each trial of the negative binomial distribution."""
- if shape == []:
- shape = None
- return mt.negative_binomial(trials, p, shape)
-
-def multinomial(trials, probs, shape=[]):
- """multinomial(trials, probs) or multinomial(trials, probs, [n, m, ...]) returns
- array of multinomial distributed integer vectors.
-
- trials is the number of trials in each multinomial distribution.
- probs is a one dimensional array. There are len(prob)+1 events.
- prob[i] is the probability of the i-th event, 0<=i<len(prob).
- The probability of event len(prob) is 1.-np.sum(prob).
-
- The first form returns a single 1-D array containing one multinomially
- distributed vector.
-
- The second form returns an array of shape (m, n, ..., len(probs)).
- In this case, output[i,j,...,:] is a 1-D array containing a multinomially
- distributed integer 1-D array."""
- if shape == []:
- shape = None
- return mt.multinomial(trials, probs, shape)
-
-def poisson(mean, shape=[]):
- """poisson(mean) or poisson(mean, [n, m, ...]) returns array of poisson
- distributed random integers with specified mean."""
- if shape == []:
- shape = None
- return mt.poisson(mean, shape)
-
-
-def mean_var_test(x, type, mean, var, skew=[]):
- n = len(x) * 1.0
- x_mean = np.sum(x, axis=0)/n
- x_minus_mean = x - x_mean
- x_var = np.sum(x_minus_mean*x_minus_mean, axis=0)/(n-1.0)
- print("\nAverage of ", len(x), type)
- print("(should be about ", mean, "):", x_mean)
- print("Variance of those random numbers (should be about ", var, "):", x_var)
- if skew != []:
- x_skew = (np.sum(x_minus_mean*x_minus_mean*x_minus_mean, axis=0)/9998.)/x_var**(3./2.)
- print("Skewness of those random numbers (should be about ", skew, "):", x_skew)
-
-def test():
- obj = mt.get_state()
- mt.set_state(obj)
- obj2 = mt.get_state()
- if (obj2[1] - obj[1]).any():
- raise SystemExit("Failed seed test.")
- print("First random number is", random())
- print("Average of 10000 random numbers is", np.sum(random(10000), axis=0)/10000.)
- x = random([10, 1000])
- if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000:
- raise SystemExit("random returned wrong shape")
- x.shape = (10000,)
- print("Average of 100 by 100 random numbers is", np.sum(x, axis=0)/10000.)
- y = uniform(0.5, 0.6, (1000, 10))
- if len(y.shape) !=2 or y.shape[0] != 1000 or y.shape[1] != 10:
- raise SystemExit("uniform returned wrong shape")
- y.shape = (10000,)
- if np.minimum.reduce(y) <= 0.5 or np.maximum.reduce(y) >= 0.6:
- raise SystemExit("uniform returned out of desired range")
- print("randint(1, 10, shape=[50])")
- print(randint(1, 10, shape=[50]))
- print("permutation(10)", permutation(10))
- print("randint(3,9)", randint(3, 9))
- print("random_integers(10, shape=[20])")
- print(random_integers(10, shape=[20]))
- s = 3.0
- x = normal(2.0, s, [10, 1000])
- if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000:
- raise SystemExit("standard_normal returned wrong shape")
- x.shape = (10000,)
- mean_var_test(x, "normally distributed numbers with mean 2 and variance %f"%(s**2,), 2, s**2, 0)
- x = exponential(3, 10000)
- mean_var_test(x, "random numbers exponentially distributed with mean %f"%(s,), s, s**2, 2)
- x = multivariate_normal(np.array([10, 20]), np.array(([1, 2], [2, 4])))
- print("\nA multivariate normal", x)
- if x.shape != (2,): raise SystemExit("multivariate_normal returned wrong shape")
- x = multivariate_normal(np.array([10, 20]), np.array([[1, 2], [2, 4]]), [4, 3])
- print("A 4x3x2 array containing multivariate normals")
- print(x)
- if x.shape != (4, 3, 2): raise SystemExit("multivariate_normal returned wrong shape")
- x = multivariate_normal(np.array([-100, 0, 100]), np.array([[3, 2, 1], [2, 2, 1], [1, 1, 1]]), 10000)
- x_mean = np.sum(x, axis=0)/10000.
- print("Average of 10000 multivariate normals with mean [-100,0,100]")
- print(x_mean)
- x_minus_mean = x - x_mean
- print("Estimated covariance of 10000 multivariate normals with covariance [[3,2,1],[2,2,1],[1,1,1]]")
- print(np.dot(np.transpose(x_minus_mean), x_minus_mean)/9999.)
- x = beta(5.0, 10.0, 10000)
- mean_var_test(x, "beta(5.,10.) random numbers", 0.333, 0.014)
- x = gamma(.01, 2., 10000)
- mean_var_test(x, "gamma(.01,2.) random numbers", 2*100, 2*100*100)
- x = chi_square(11., 10000)
- mean_var_test(x, "chi squared random numbers with 11 degrees of freedom", 11, 22, 2*np.sqrt(2./11.))
- x = F(5., 10., 10000)
- mean_var_test(x, "F random numbers with 5 and 10 degrees of freedom", 1.25, 1.35)
- x = poisson(50., 10000)
- mean_var_test(x, "poisson random numbers with mean 50", 50, 50, 0.14)
- print("\nEach element is the result of 16 binomial trials with probability 0.5:")
- print(binomial(16, 0.5, 16))
- print("\nEach element is the result of 16 negative binomial trials with probability 0.5:")
- print(negative_binomial(16, 0.5, [16,]))
- print("\nEach row is the result of 16 multinomial trials with probabilities [0.1, 0.5, 0.1 0.3]:")
- x = multinomial(16, [0.1, 0.5, 0.1], 8)
- print(x)
- print("Mean = ", np.sum(x, axis=0)/8.)
-
-if __name__ == '__main__':
- test()
diff --git a/numpy/oldnumeric/rng.py b/numpy/oldnumeric/rng.py
deleted file mode 100644
index 06120798d..000000000
--- a/numpy/oldnumeric/rng.py
+++ /dev/null
@@ -1,137 +0,0 @@
-"""Re-create the RNG interface from Numeric.
-
-Replace import RNG with import numpy.oldnumeric.rng as RNG.
-It is for backwards compatibility only.
-
-"""
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['CreateGenerator', 'ExponentialDistribution', 'LogNormalDistribution',
- 'NormalDistribution', 'UniformDistribution', 'error', 'ranf',
- 'default_distribution', 'random_sample', 'standard_generator']
-
-import numpy.random.mtrand as mt
-import math
-
-class error(Exception):
- pass
-
-class Distribution(object):
- def __init__(self, meth, *args):
- self._meth = meth
- self._args = args
-
- def density(self, x):
- raise NotImplementedError
-
- def __call__(self, x):
- return self.density(x)
-
- def _onesample(self, rng):
- return getattr(rng, self._meth)(*self._args)
-
- def _sample(self, rng, n):
- kwds = {'size' : n}
- return getattr(rng, self._meth)(*self._args, **kwds)
-
-
-class ExponentialDistribution(Distribution):
- def __init__(self, lambda_):
- if (lambda_ <= 0):
- raise error("parameter must be positive")
- Distribution.__init__(self, 'exponential', lambda_)
-
- def density(x):
- if x < 0:
- return 0.0
- else:
- lambda_ = self._args[0]
- return lambda_*math.exp(-lambda_*x)
-
-class LogNormalDistribution(Distribution):
- def __init__(self, m, s):
- m = float(m)
- s = float(s)
- if (s <= 0):
- raise error("standard deviation must be positive")
- Distribution.__init__(self, 'lognormal', m, s)
- sn = math.log(1.0+s*s/(m*m));
- self._mn = math.log(m)-0.5*sn
- self._sn = math.sqrt(sn)
- self._fac = 1.0/math.sqrt(2*math.pi)/self._sn
-
- def density(x):
- m, s = self._args
- y = (math.log(x)-self._mn)/self._sn
- return self._fac*math.exp(-0.5*y*y)/x
-
-
-class NormalDistribution(Distribution):
- def __init__(self, m, s):
- m = float(m)
- s = float(s)
- if (s <= 0):
- raise error("standard deviation must be positive")
- Distribution.__init__(self, 'normal', m, s)
- self._fac = 1.0/math.sqrt(2*math.pi)/s
-
- def density(x):
- m, s = self._args
- y = (x-m)/s
- return self._fac*math.exp(-0.5*y*y)
-
-class UniformDistribution(Distribution):
- def __init__(self, a, b):
- a = float(a)
- b = float(b)
- width = b-a
- if (width <=0):
- raise error("width of uniform distribution must be > 0")
- Distribution.__init__(self, 'uniform', a, b)
- self._fac = 1.0/width
-
- def density(x):
- a, b = self._args
- if (x < a) or (x >= b):
- return 0.0
- else:
- return self._fac
-
-default_distribution = UniformDistribution(0.0, 1.0)
-
-class CreateGenerator(object):
- def __init__(self, seed, dist=None):
- if seed <= 0:
- self._rng = mt.RandomState()
- elif seed > 0:
- self._rng = mt.RandomState(seed)
- if dist is None:
- dist = default_distribution
- if not isinstance(dist, Distribution):
- raise error("Not a distribution object")
- self._dist = dist
-
- def ranf(self):
- return self._dist._onesample(self._rng)
-
- def sample(self, n):
- return self._dist._sample(self._rng, n)
-
-
-standard_generator = CreateGenerator(-1)
-
-def ranf():
- "ranf() = a random number from the standard generator."
- return standard_generator.ranf()
-
-def random_sample(*n):
- """random_sample(n) = array of n random numbers;
-
- random_sample(n1, n2, ...)= random array of shape (n1, n2, ..)"""
-
- if not n:
- return standard_generator.ranf()
- m = 1
- for i in n:
- m = m * i
- return standard_generator.sample(m).reshape(*n)
diff --git a/numpy/oldnumeric/rng_stats.py b/numpy/oldnumeric/rng_stats.py
deleted file mode 100644
index dd450343d..000000000
--- a/numpy/oldnumeric/rng_stats.py
+++ /dev/null
@@ -1,36 +0,0 @@
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['average', 'histogram', 'standardDeviation', 'variance']
-
-import numpy.oldnumeric as Numeric
-
-def average(data):
- data = Numeric.array(data)
- return Numeric.add.reduce(data)/len(data)
-
-def variance(data):
- data = Numeric.array(data)
- return Numeric.add.reduce((data-average(data, axis=0))**2)/(len(data)-1)
-
-def standardDeviation(data):
- data = Numeric.array(data)
- return Numeric.sqrt(variance(data))
-
-def histogram(data, nbins, range = None):
- data = Numeric.array(data, Numeric.Float)
- if range is None:
- min = Numeric.minimum.reduce(data)
- max = Numeric.maximum.reduce(data)
- else:
- min, max = range
- data = Numeric.repeat(data,
- Numeric.logical_and(Numeric.less_equal(data, max),
- Numeric.greater_equal(data,
- min)), axis=0)
- bin_width = (max-min)/nbins
- data = Numeric.floor((data - min)/bin_width).astype(Numeric.Int)
- histo = Numeric.add.reduce(Numeric.equal(
- Numeric.arange(nbins)[:, Numeric.NewAxis], data), -1)
- histo[-1] = histo[-1] + Numeric.add.reduce(Numeric.equal(nbins, data))
- bins = min + bin_width*(Numeric.arange(nbins)+0.5)
- return Numeric.transpose(Numeric.array([bins, histo]))
diff --git a/numpy/oldnumeric/setup.py b/numpy/oldnumeric/setup.py
deleted file mode 100644
index 13c3e0d8d..000000000
--- a/numpy/oldnumeric/setup.py
+++ /dev/null
@@ -1,11 +0,0 @@
-from __future__ import division, print_function
-
-def configuration(parent_package='',top_path=None):
- from numpy.distutils.misc_util import Configuration
- config = Configuration('oldnumeric', parent_package, top_path)
- config.add_data_dir('tests')
- return config
-
-if __name__ == '__main__':
- from numpy.distutils.core import setup
- setup(configuration=configuration)
diff --git a/numpy/oldnumeric/tests/test_oldnumeric.py b/numpy/oldnumeric/tests/test_oldnumeric.py
deleted file mode 100644
index 2c1a806ac..000000000
--- a/numpy/oldnumeric/tests/test_oldnumeric.py
+++ /dev/null
@@ -1,96 +0,0 @@
-from __future__ import division, absolute_import, print_function
-
-import unittest
-
-from numpy.testing import *
-
-from numpy import array
-from numpy.oldnumeric import *
-from numpy.core.numeric import float32, float64, complex64, complex128, int8, \
- int16, int32, int64, uint, uint8, uint16, uint32, uint64
-
-class test_oldtypes(unittest.TestCase):
- def test_oldtypes(self, level=1):
- a1 = array([0, 1, 0], Float)
- a2 = array([0, 1, 0], float)
- assert_array_equal(a1, a2)
- a1 = array([0, 1, 0], Float8)
- a2 = array([0, 1, 0], float)
- assert_array_equal(a1, a2)
- a1 = array([0, 1, 0], Float16)
- a2 = array([0, 1, 0], float)
- assert_array_equal(a1, a2)
- a1 = array([0, 1, 0], Float32)
- a2 = array([0, 1, 0], float32)
- assert_array_equal(a1, a2)
- a1 = array([0, 1, 0], Float64)
- a2 = array([0, 1, 0], float64)
- assert_array_equal(a1, a2)
- a1 = array([0, 1, 0], Complex)
- a2 = array([0, 1, 0], complex)
- assert_array_equal(a1, a2)
- a1 = array([0, 1, 0], Complex8)
- a2 = array([0, 1, 0], complex)
- assert_array_equal(a1, a2)
- a1 = array([0, 1, 0], Complex16)
- a2 = array([0, 1, 0], complex)
- assert_array_equal(a1, a2)
- a1 = array([0, 1, 0], Complex32)
- a2 = array([0, 1, 0], complex64)
- assert_array_equal(a1, a2)
- a1 = array([0, 1, 0], Complex64)
- a2 = array([0, 1, 0], complex128)
- assert_array_equal(a1, a2)
- a1 = array([0, 1, 0], Int)
- a2 = array([0, 1, 0], int)
- assert_array_equal(a1, a2)
- a1 = array([0, 1, 0], Int8)
- a2 = array([0, 1, 0], int8)
- assert_array_equal(a1, a2)
- a1 = array([0, 1, 0], Int16)
- a2 = array([0, 1, 0], int16)
- assert_array_equal(a1, a2)
- a1 = array([0, 1, 0], Int32)
- a2 = array([0, 1, 0], int32)
- assert_array_equal(a1, a2)
- try:
- a1 = array([0, 1, 0], Int64)
- a2 = array([0, 1, 0], int64)
- assert_array_equal(a1, a2)
- except NameError:
- # Not all systems have 64-bit integers.
- pass
- a1 = array([0, 1, 0], UnsignedInt)
- a2 = array([0, 1, 0], UnsignedInteger)
- a3 = array([0, 1, 0], uint)
- assert_array_equal(a1, a3)
- assert_array_equal(a2, a3)
- a1 = array([0, 1, 0], UInt8)
- a2 = array([0, 1, 0], UnsignedInt8)
- a3 = array([0, 1, 0], uint8)
- assert_array_equal(a1, a3)
- assert_array_equal(a2, a3)
- a1 = array([0, 1, 0], UInt16)
- a2 = array([0, 1, 0], UnsignedInt16)
- a3 = array([0, 1, 0], uint16)
- assert_array_equal(a1, a3)
- assert_array_equal(a2, a3)
- a1 = array([0, 1, 0], UInt32)
- a2 = array([0, 1, 0], UnsignedInt32)
- a3 = array([0, 1, 0], uint32)
- assert_array_equal(a1, a3)
- assert_array_equal(a2, a3)
- try:
- a1 = array([0, 1, 0], UInt64)
- a2 = array([0, 1, 0], UnsignedInt64)
- a3 = array([0, 1, 0], uint64)
- assert_array_equal(a1, a3)
- assert_array_equal(a2, a3)
- except NameError:
- # Not all systems have 64-bit integers.
- pass
-
-
-if __name__ == "__main__":
- import nose
- nose.main()
diff --git a/numpy/oldnumeric/tests/test_regression.py b/numpy/oldnumeric/tests/test_regression.py
deleted file mode 100644
index 272323b81..000000000
--- a/numpy/oldnumeric/tests/test_regression.py
+++ /dev/null
@@ -1,11 +0,0 @@
-from __future__ import division, absolute_import, print_function
-
-from numpy.testing import *
-
-rlevel = 1
-
-class TestRegression(TestCase):
- def test_numeric_random(self, level=rlevel):
- """Ticket #552"""
- from numpy.oldnumeric.random_array import randint
- randint(0, 50, [2, 3])
diff --git a/numpy/oldnumeric/typeconv.py b/numpy/oldnumeric/typeconv.py
deleted file mode 100644
index c4a8c4385..000000000
--- a/numpy/oldnumeric/typeconv.py
+++ /dev/null
@@ -1,62 +0,0 @@
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['oldtype2dtype', 'convtypecode', 'convtypecode2', 'oldtypecodes']
-
-import numpy as np
-
-oldtype2dtype = {'1': np.dtype(np.byte),
- 's': np.dtype(np.short),
-# 'i': np.dtype(np.intc),
-# 'l': np.dtype(int),
-# 'b': np.dtype(np.ubyte),
- 'w': np.dtype(np.ushort),
- 'u': np.dtype(np.uintc),
-# 'f': np.dtype(np.single),
-# 'd': np.dtype(float),
-# 'F': np.dtype(np.csingle),
-# 'D': np.dtype(complex),
-# 'O': np.dtype(object),
-# 'c': np.dtype('c'),
- None: np.dtype(int)
- }
-
-# converts typecode=None to int
-def convtypecode(typecode, dtype=None):
- if dtype is None:
- try:
- return oldtype2dtype[typecode]
- except:
- return np.dtype(typecode)
- else:
- return dtype
-
-#if both typecode and dtype are None
-# return None
-def convtypecode2(typecode, dtype=None):
- if dtype is None:
- if typecode is None:
- return None
- else:
- try:
- return oldtype2dtype[typecode]
- except:
- return np.dtype(typecode)
- else:
- return dtype
-
-_changedtypes = {'B': 'b',
- 'b': '1',
- 'h': 's',
- 'H': 'w',
- 'I': 'u'}
-
-class _oldtypecodes(dict):
- def __getitem__(self, obj):
- char = np.dtype(obj).char
- try:
- return _changedtypes[char]
- except KeyError:
- return char
-
-
-oldtypecodes = _oldtypecodes()
diff --git a/numpy/oldnumeric/ufuncs.py b/numpy/oldnumeric/ufuncs.py
deleted file mode 100644
index 4ab43cb1f..000000000
--- a/numpy/oldnumeric/ufuncs.py
+++ /dev/null
@@ -1,21 +0,0 @@
-from __future__ import division, absolute_import, print_function
-
-__all__ = ['less', 'cosh', 'arcsinh', 'add', 'ceil', 'arctan2', 'floor_divide',
- 'fmod', 'hypot', 'logical_and', 'power', 'sinh', 'remainder', 'cos',
- 'equal', 'arccos', 'less_equal', 'divide', 'bitwise_or',
- 'bitwise_and', 'logical_xor', 'log', 'subtract', 'invert',
- 'negative', 'log10', 'arcsin', 'arctanh', 'logical_not',
- 'not_equal', 'tanh', 'true_divide', 'maximum', 'arccosh',
- 'logical_or', 'minimum', 'conjugate', 'tan', 'greater',
- 'bitwise_xor', 'fabs', 'floor', 'sqrt', 'arctan', 'right_shift',
- 'absolute', 'sin', 'multiply', 'greater_equal', 'left_shift',
- 'exp', 'divide_safe']
-
-from numpy import less, cosh, arcsinh, add, ceil, arctan2, floor_divide, \
- fmod, hypot, logical_and, power, sinh, remainder, cos, \
- equal, arccos, less_equal, divide, bitwise_or, bitwise_and, \
- logical_xor, log, subtract, invert, negative, log10, arcsin, \
- arctanh, logical_not, not_equal, tanh, true_divide, maximum, \
- arccosh, logical_or, minimum, conjugate, tan, greater, bitwise_xor, \
- fabs, floor, sqrt, arctan, right_shift, absolute, sin, \
- multiply, greater_equal, left_shift, exp, divide as divide_safe
diff --git a/numpy/oldnumeric/user_array.py b/numpy/oldnumeric/user_array.py
deleted file mode 100644
index e5f3ecd01..000000000
--- a/numpy/oldnumeric/user_array.py
+++ /dev/null
@@ -1,9 +0,0 @@
-from __future__ import division, absolute_import, print_function
-
-from numpy.oldnumeric import *
-from numpy.lib.user_array import container as UserArray
-
-import numpy.oldnumeric as nold
-__all__ = nold.__all__[:]
-__all__ += ['UserArray']
-del nold