summaryrefslogtreecommitdiff
path: root/numpy/polynomial/hermite.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2012-01-30 20:10:52 -0700
committerCharles Harris <charlesr.harris@gmail.com>2012-02-05 17:03:27 -0700
commitef767a54fae8977cb15d7e0849a8cb626c4b0f2c (patch)
treeef00849723a251b4a485de182c7b316a7cf9facb /numpy/polynomial/hermite.py
parent13010c7f1b338a6286a4b4bb7376a1f3df833d24 (diff)
downloadnumpy-ef767a54fae8977cb15d7e0849a8cb626c4b0f2c.tar.gz
ENH: Improve the computation of polynomials from roots.
The original method was overly sensitive to roundoff. Of the two approaches considered, gauss integration or binary subdivision of the roots, the latter is more compatible with using other number representations such as mpmath. No method is going to be suitable for large numbers of arbitrary zeros but the current method is a significant improvement.
Diffstat (limited to 'numpy/polynomial/hermite.py')
-rw-r--r--numpy/polynomial/hermite.py15
1 files changed, 11 insertions, 4 deletions
diff --git a/numpy/polynomial/hermite.py b/numpy/polynomial/hermite.py
index 627232d7c..32b50a866 100644
--- a/numpy/polynomial/hermite.py
+++ b/numpy/polynomial/hermite.py
@@ -287,10 +287,17 @@ def hermfromroots(roots) :
return np.ones(1)
else :
[roots] = pu.as_series([roots], trim=False)
- prd = np.array([1], dtype=roots.dtype)
- for r in roots:
- prd = hermsub(hermmulx(prd), r*prd)
- return prd
+ roots.sort()
+ n = len(roots)
+ p = [hermline(-r, 1) for r in roots]
+ while n > 1:
+ m = n//2
+ tmp = [hermmul(p[i], p[i+m]) for i in range(m)]
+ if n%2:
+ tmp[0] = hermmul(tmp[0], p[-1])
+ p = tmp
+ n = m
+ return p[0]
def hermadd(c1, c2):