diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2011-12-28 18:43:17 -0700 |
---|---|---|
committer | Charles Harris <charlesr.harris@gmail.com> | 2012-01-09 11:09:36 -0700 |
commit | dc7719f66452288d7c0192f93c07c8b18d870b75 (patch) | |
tree | 54d6102e9dab5896fa402afa9e22807647173a59 /numpy/polynomial/laguerre.py | |
parent | c462637f9b398600d25ca449aef8586d8d9d6210 (diff) | |
download | numpy-dc7719f66452288d7c0192f93c07c8b18d870b75.tar.gz |
DOC: Finish documenting new functions in the polynomial package.
The old functions could use a review, but that isn't pressing.
Diffstat (limited to 'numpy/polynomial/laguerre.py')
-rw-r--r-- | numpy/polynomial/laguerre.py | 212 |
1 files changed, 140 insertions, 72 deletions
diff --git a/numpy/polynomial/laguerre.py b/numpy/polynomial/laguerre.py index 489ecb8a2..710b480d9 100644 --- a/numpy/polynomial/laguerre.py +++ b/numpy/polynomial/laguerre.py @@ -650,6 +650,8 @@ def lagder(c, m=1, scl=1, axis=0) : axis : int, optional Axis over which the derivative is taken. (Default: 0). + .. versionadded:: 1.7.0 + Returns ------- der : ndarray @@ -751,6 +753,8 @@ def lagint(c, m=1, k=[], lbnd=0, scl=1, axis=0): axis : int, optional Axis over which the derivative is taken. (Default: 0). + .. versionadded:: 1.7.0 + Returns ------- S : ndarray @@ -950,8 +954,6 @@ def lagval2d(x, y, c): If `c` is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be c.shape[2:] + x.shape. - .. versionadded::1.7.0 - Parameters ---------- x, y : array_like, compatible objects @@ -975,6 +977,11 @@ def lagval2d(x, y, c): -------- lagval, laggrid2d, lagval3d, laggrid3d + Notes + ----- + + .. versionadded::1.7.0 + """ try: x, y = np.array((x, y), copy=0) @@ -1007,8 +1014,6 @@ def laggrid2d(x, y, c): its shape to make it 2-D. The shape of the result will be c.shape[2:] + x.shape + y.shape. - .. versionadded:: 1.7.0 - Parameters ---------- x, y : array_like, compatible objects @@ -1032,6 +1037,11 @@ def laggrid2d(x, y, c): -------- lagval, lagval2d, lagval3d, laggrid3d + Notes + ----- + + .. versionadded::1.7.0 + """ c = lagval(x, c) c = lagval(y, c) @@ -1056,8 +1066,6 @@ def lagval3d(x, y, z, c): shape to make it 3-D. The shape of the result will be c.shape[3:] + x.shape. - .. versionadded::1.7.0 - Parameters ---------- x, y, z : array_like, compatible object @@ -1082,6 +1090,11 @@ def lagval3d(x, y, z, c): -------- lagval, lagval2d, laggrid2d, laggrid3d + Notes + ----- + + .. versionadded::1.7.0 + """ try: x, y, z = np.array((x, y, z), copy=0) @@ -1117,8 +1130,6 @@ def laggrid3d(x, y, z, c): its shape to make it 3-D. The shape of the result will be c.shape[3:] + x.shape + yshape + z.shape. - .. versionadded:: 1.7.0 - Parameters ---------- x, y, z : array_like, compatible objects @@ -1143,6 +1154,11 @@ def laggrid3d(x, y, z, c): -------- lagval, lagval2d, laggrid2d, lagval3d + Notes + ----- + + .. versionadded::1.7.0 + """ c = lagval(x, c) c = lagval(y, c) @@ -1151,28 +1167,38 @@ def laggrid3d(x, y, z, c): def lagvander(x, deg) : - """Vandermonde matrix of given degree. + """Pseudo-Vandermonde matrix of given degree. - Returns the Vandermonde matrix of degree `deg` and sample points `x`. - This isn't a true Vandermonde matrix because `x` can be an arbitrary - ndarray and the Laguerre polynomials aren't powers. If ``V`` is the - returned matrix and `x` is a 2d array, then the elements of ``V`` are - ``V[i,j,k] = P_k(x[i,j])``, where ``P_k`` is the Laguerre polynomial - of degree ``k``. + Returns the pseudo-Vandermonde matrix of degree `deg` and sample points + `x`. The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., i] = L_i(x) + + where `0 <= i <= deg`. The leading indices of `V` index the elements of + `x` and the last index is the degree of the Laguerre polynomial. + + If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the + array ``V = lagvander(x, n)``, then ``np.dot(V, c)`` and + ``lagval(x, c)`` are the same up to roundoff. This equivalence is + useful both for least squares fitting and for the evaluation of a large + number of Laguerre series of the same degree and sample points. Parameters ---------- x : array_like - Array of points. The values are converted to double or complex - doubles. If x is scalar it is converted to a 1D array. - deg : integer + Array of points. The dtype is converted to float64 or complex128 + depending on whether any of the elements are complex. If `x` is + scalar it is converted to a 1-D array. + deg : int Degree of the resulting matrix. Returns ------- - vander : Vandermonde matrix. - The shape of the returned matrix is ``x.shape + (deg+1,)``. The last - index is the degree. + vander: ndarray + The pseudo-Vandermonde matrix. The shape of the returned matrix is + ``x.shape + (deg + 1,)``, where The last index is the degree of the + corresponding Laguerre polynomial. The dtype will be the same as + the converted `x`. Examples -------- @@ -1201,36 +1227,50 @@ def lagvander(x, deg) : def lagvander2d(x, y, deg) : - """Pseudo Vandermonde matrix of given degree. - - Returns the pseudo Vandermonde matrix for 2D Laguerre series in `x` and - `y`. The sample point coordinates must all have the same shape after - conversion to arrays and the dtype will be converted to either float64 - or complex128 depending on whether any of `x` or 'y' are complex. The - maximum degrees of the 2D Laguerre series in each variable are specified in - the list `deg` in the form ``[xdeg, ydeg]``. The return array has the - shape ``x.shape + (order,)`` if `x`, and `y` are arrays or ``(1, order) - if they are scalars. Here order is the number of elements in a - flattened coefficient array of original shape ``(xdeg + 1, ydeg + 1)``. - The flattening is done so that the resulting pseudo Vandermonde array - can be easily used in least squares fits. + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points `(x, y)`. The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., deg[1]*i + j] = L_i(x) * L_j(y), + + where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of + `V` index the points `(x, y)` and the last index encodes the degrees of + the Laguerre polynomials. + + If `c` is a 2-D array of coefficients of shape `(m + 1, n + 1)` and `V` + is the matrix ``V = lagvander2d(x, y, [m, n])``, then + ``np.dot(V, c.flat)`` and ``lagval2d(x, y, c)`` are the same up to + roundoff. This equivalence is useful both for least squares fitting and + for the evaluation of a large number of 2-D Laguerre series of the same + degrees and sample points. Parameters ---------- - x,y : array_like - Arrays of point coordinates, each of the same shape. - deg : list + x, y : array_like + Arrays of point coordinates, all of the same shape. The dtypes + will be converted to either float64 or complex128 depending on + whether any of the elements are complex. Scalars are converted to + 1-D arrays. + deg : list of ints List of maximum degrees of the form [x_deg, y_deg]. Returns ------- vander2d : ndarray - The shape of the returned matrix is described above. + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same + as the converted `x` and `y`. See Also -------- lagvander, lagvander3d. lagval2d, lagval3d + Notes + ----- + + .. versionadded::1.7.0 + """ ideg = [int(d) for d in deg] is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)] @@ -1246,37 +1286,51 @@ def lagvander2d(x, y, deg) : def lagvander3d(x, y, z, deg) : - """Pseudo Vandermonde matrix of given degree. - - Returns the pseudo Vandermonde matrix for 3D Laguerre series in `x`, - `y`, or `z`. The sample point coordinates must all have the same shape - after conversion to arrays and the dtype will be converted to either - float64 or complex128 depending on whether any of `x`, `y`, or 'z' are - complex. The maximum degrees of the 3D Laguerre series in each - variable are specified in the list `deg` in the form ``[xdeg, ydeg, - zdeg]``. The return array has the shape ``x.shape + (order,)`` if `x`, - `y`, and `z` are arrays or ``(1, order) if they are scalars. Here order - is the number of elements in a flattened coefficient array of original - shape ``(xdeg + 1, ydeg + 1, zdeg + 1)``. The flattening is done so - that the resulting pseudo Vandermonde array can be easily used in least - squares fits. + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`, + then The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = L_i(x)*L_j(y)*L_k(z), + + where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading + indices of `V` index the points `(x, y, z)` and the last index encodes + the degrees of the Laguerre polynomials. + + If `c` is a 3-D array of coefficients of shape `(l + 1, m + 1, n + 1)` + and `V` is the matrix ``V = lagvander3d(x, y, z, [l, m, n])``, then + ``np.dot(V, c.flat)`` and ``lagval3d(x, y, z, c)`` are the same up to + roundoff. This equivalence is useful both for least squares fitting and + for the evaluation of a large number of 3-D Laguerre series of the + same degrees and sample points. Parameters ---------- - x,y,z : array_like - Arrays of point coordinates, each of the same shape. - deg : list + x, y, z : array_like + Arrays of point coordinates, all of the same shape. The dtypes will + be converted to either float64 or complex128 depending on whether + any of the elements are complex. Scalars are converted to 1-D + arrays. + deg : list of ints List of maximum degrees of the form [x_deg, y_deg, z_deg]. Returns ------- vander3d : ndarray - The shape of the returned matrix is described above. + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will + be the same as the converted `x`, `y`, and `z`. See Also -------- lagvander, lagvander3d. lagval2d, lagval3d + Notes + ----- + + .. versionadded::1.7.0 + """ ideg = [int(d) for d in deg] is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)] @@ -1462,11 +1516,12 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None): def lagcompanion(c): - """Return the companion matrix of c. + """ + Return the companion matrix of c. - The unscaled companion matrix of the Laguerre polynomials is already - symmetric when `c` represents a single Laguerre polynomial, so no - further scaling is needed. + The usual companion matrix of the Laguerre polynomials is already + symmetric when `c` is a basis Laguerre polynomial, so no scaling is + applied. Parameters ---------- @@ -1479,6 +1534,11 @@ def lagcompanion(c): mat : ndarray Companion matrix of dimensions (deg, deg). + Notes + ----- + + .. versionadded::1.7.0 + """ accprod = np.multiply.accumulate # c is a trimmed copy @@ -1560,12 +1620,13 @@ def lagroots(c): def laggauss(deg): - """Gauss Laguerre quadrature. + """ + Gauss-Laguerre quadrature. Computes the sample points and weights for Gauss-Laguerre quadrature. These sample points and weights will correctly integrate polynomials of - degree ``2*deg - 1`` or less over the interval ``[0, inf]`` with the - weight function ``f(x) = exp(-x)``. + degree :math:`2*deg - 1` or less over the interval :math:`[0, \inf]` with the + weight function :math:`f(x) = \exp(-x)`. Parameters ---------- @@ -1581,14 +1642,17 @@ def laggauss(deg): Notes ----- - The results have only been tested up to degree 100. Higher degrees may + + .. versionadded::1.7.0 + + The results have only been tested up to degree 100 higher degrees may be problematic. The weights are determined by using the fact that - w = c / (L'_n(x_k) * L_{n-1}(x_k)) + .. math:: w_k = c / (L'_n(x_k) * L_{n-1}(x_k)) - where ``c`` is a constant independent of ``k`` and ``x_k`` is the k'th - root of ``L_n``, and then scaling the results to get the right value - when integrating 1. + where :math:`c` is a constant independent of :math:`k` and :math:`x_k` + is the k'th root of :math:`L_n`, and then scaling the results to get + the right value when integrating 1. """ ideg = int(deg) @@ -1623,10 +1687,9 @@ def laggauss(deg): def lagweight(x): """Weight function of the Laguerre polynomials. - The weight function for which the Laguerre polynomials are orthogonal. - In this case the weight function is ``exp(-x)``. Note that the Laguerre - polynomials are not normalized, indeed, may be much greater than the - normalized versions. + The weight function is :math:`exp(-x)` and the interval of integration + is :math:`[0, \inf]`. The Laguerre polynomials are orthogonal, but not + normalized, with respect to this weight function. Parameters ---------- @@ -1638,6 +1701,11 @@ def lagweight(x): w : ndarray The weight function at `x`. + Notes + ----- + + .. versionadded::1.7.0 + """ w = np.exp(-x) return w |