summaryrefslogtreecommitdiff
path: root/numpy/polynomial/legendre.py
diff options
context:
space:
mode:
authorrgommers <ralf.gommers@googlemail.com>2011-03-03 14:04:50 +0800
committerrgommers <ralf.gommers@googlemail.com>2011-03-03 14:04:50 +0800
commit85813a9a2eb163582cb518f0fe5d632b662ad0c7 (patch)
treeb42d75595858d65136a2dca2e152d886197318cf /numpy/polynomial/legendre.py
parent6439e35ecbdb66410fb1550cf917f5bddbbe1e8e (diff)
downloadnumpy-85813a9a2eb163582cb518f0fe5d632b662ad0c7.tar.gz
DOC: fix some formatting errors in polynomial docs.
Diffstat (limited to 'numpy/polynomial/legendre.py')
-rw-r--r--numpy/polynomial/legendre.py15
1 files changed, 5 insertions, 10 deletions
diff --git a/numpy/polynomial/legendre.py b/numpy/polynomial/legendre.py
index f09f3dc17..3d7bbb521 100644
--- a/numpy/polynomial/legendre.py
+++ b/numpy/polynomial/legendre.py
@@ -65,8 +65,6 @@ legtrim = pu.trimcoef
def poly2leg(pol) :
"""
- poly2leg(pol)
-
Convert a polynomial to a Legendre series.
Convert an array representing the coefficients of a polynomial (relative
@@ -463,7 +461,7 @@ def legmulx(cs):
.. math::
- xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1)
+ xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1)
"""
# cs is a trimmed copy
@@ -564,12 +562,12 @@ def legdiv(c1, c2):
Parameters
----------
c1, c2 : array_like
- 1-d arrays of Legendre series coefficients ordered from low to
+ 1-D arrays of Legendre series coefficients ordered from low to
high.
Returns
-------
- [quo, rem] : ndarrays
+ quo, rem : ndarrays
Of Legendre series coefficients representing the quotient and
remainder.
@@ -683,8 +681,8 @@ def legder(cs, m=1, scl=1) :
Parameters
----------
- cs: array_like
- 1-d array of Legendre series coefficients ordered from low to high.
+ cs : array_like
+ 1-D array of Legendre series coefficients ordered from low to high.
m : int, optional
Number of derivatives taken, must be non-negative. (Default: 1)
scl : scalar, optional
@@ -887,9 +885,6 @@ def legval(x, cs):
--------
legfit
- Examples
- --------
-
Notes
-----
The evaluation uses Clenshaw recursion, aka synthetic division.