diff options
author | rgommers <ralf.gommers@googlemail.com> | 2011-03-03 14:04:50 +0800 |
---|---|---|
committer | rgommers <ralf.gommers@googlemail.com> | 2011-03-03 14:04:50 +0800 |
commit | 85813a9a2eb163582cb518f0fe5d632b662ad0c7 (patch) | |
tree | b42d75595858d65136a2dca2e152d886197318cf /numpy/polynomial/legendre.py | |
parent | 6439e35ecbdb66410fb1550cf917f5bddbbe1e8e (diff) | |
download | numpy-85813a9a2eb163582cb518f0fe5d632b662ad0c7.tar.gz |
DOC: fix some formatting errors in polynomial docs.
Diffstat (limited to 'numpy/polynomial/legendre.py')
-rw-r--r-- | numpy/polynomial/legendre.py | 15 |
1 files changed, 5 insertions, 10 deletions
diff --git a/numpy/polynomial/legendre.py b/numpy/polynomial/legendre.py index f09f3dc17..3d7bbb521 100644 --- a/numpy/polynomial/legendre.py +++ b/numpy/polynomial/legendre.py @@ -65,8 +65,6 @@ legtrim = pu.trimcoef def poly2leg(pol) : """ - poly2leg(pol) - Convert a polynomial to a Legendre series. Convert an array representing the coefficients of a polynomial (relative @@ -463,7 +461,7 @@ def legmulx(cs): .. math:: - xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1) + xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1) """ # cs is a trimmed copy @@ -564,12 +562,12 @@ def legdiv(c1, c2): Parameters ---------- c1, c2 : array_like - 1-d arrays of Legendre series coefficients ordered from low to + 1-D arrays of Legendre series coefficients ordered from low to high. Returns ------- - [quo, rem] : ndarrays + quo, rem : ndarrays Of Legendre series coefficients representing the quotient and remainder. @@ -683,8 +681,8 @@ def legder(cs, m=1, scl=1) : Parameters ---------- - cs: array_like - 1-d array of Legendre series coefficients ordered from low to high. + cs : array_like + 1-D array of Legendre series coefficients ordered from low to high. m : int, optional Number of derivatives taken, must be non-negative. (Default: 1) scl : scalar, optional @@ -887,9 +885,6 @@ def legval(x, cs): -------- legfit - Examples - -------- - Notes ----- The evaluation uses Clenshaw recursion, aka synthetic division. |