summaryrefslogtreecommitdiff
path: root/numpy/polynomial
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2016-12-13 15:53:56 -0700
committerCharles Harris <charlesr.harris@gmail.com>2016-12-14 11:33:22 -0700
commitec0e04694278ef9ea83537d308b07fc27c1b5f85 (patch)
treea28bb53d6827e5449c3f2d5ade3a4ad43bef7ca0 /numpy/polynomial
parent2a1e5a6d2ffdabf2a18875ee8dd57773d608e4c5 (diff)
downloadnumpy-ec0e04694278ef9ea83537d308b07fc27c1b5f85.tar.gz
DEP: Fix escaped string characters deprecated in Python 3.6.
In Python 3.6 a number of escape sequences that were previously accepted -- for instance "\(" that was translated to "\\(" -- are deprecated. To retain the previous behavior either raw strings must be used or the backslash must be properly escaped itself.
Diffstat (limited to 'numpy/polynomial')
-rw-r--r--numpy/polynomial/chebyshev.py10
-rw-r--r--numpy/polynomial/hermite.py10
-rw-r--r--numpy/polynomial/hermite_e.py10
-rw-r--r--numpy/polynomial/laguerre.py8
-rw-r--r--numpy/polynomial/legendre.py2
-rw-r--r--numpy/polynomial/polynomial.py2
6 files changed, 21 insertions, 21 deletions
diff --git a/numpy/polynomial/chebyshev.py b/numpy/polynomial/chebyshev.py
index 82b3dc9a6..5d28b990f 100644
--- a/numpy/polynomial/chebyshev.py
+++ b/numpy/polynomial/chebyshev.py
@@ -1244,7 +1244,7 @@ def chebgrid2d(x, y, c):
This function returns the values:
- .. math:: p(a,b) = \sum_{i,j} c_{i,j} * T_i(a) * T_j(b),
+ .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * T_i(a) * T_j(b),
where the points `(a, b)` consist of all pairs formed by taking
`a` from `x` and `b` from `y`. The resulting points form a grid with
@@ -1898,7 +1898,7 @@ def chebgauss(deg):
Computes the sample points and weights for Gauss-Chebyshev quadrature.
These sample points and weights will correctly integrate polynomials of
degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with
- the weight function :math:`f(x) = 1/\sqrt{1 - x^2}`.
+ the weight function :math:`f(x) = 1/\\sqrt{1 - x^2}`.
Parameters
----------
@@ -1921,9 +1921,9 @@ def chebgauss(deg):
be problematic. For Gauss-Chebyshev there are closed form solutions for
the sample points and weights. If n = `deg`, then
- .. math:: x_i = \cos(\pi (2 i - 1) / (2 n))
+ .. math:: x_i = \\cos(\\pi (2 i - 1) / (2 n))
- .. math:: w_i = \pi / n
+ .. math:: w_i = \\pi / n
"""
ideg = int(deg)
@@ -1940,7 +1940,7 @@ def chebweight(x):
"""
The weight function of the Chebyshev polynomials.
- The weight function is :math:`1/\sqrt{1 - x^2}` and the interval of
+ The weight function is :math:`1/\\sqrt{1 - x^2}` and the interval of
integration is :math:`[-1, 1]`. The Chebyshev polynomials are
orthogonal, but not normalized, with respect to this weight function.
diff --git a/numpy/polynomial/hermite.py b/numpy/polynomial/hermite.py
index d7038e54d..00ca8702d 100644
--- a/numpy/polynomial/hermite.py
+++ b/numpy/polynomial/hermite.py
@@ -1007,7 +1007,7 @@ def hermgrid2d(x, y, c):
This function returns the values:
- .. math:: p(a,b) = \sum_{i,j} c_{i,j} * H_i(a) * H_j(b)
+ .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * H_i(a) * H_j(b)
where the points `(a, b)` consist of all pairs formed by taking
`a` from `x` and `b` from `y`. The resulting points form a grid with
@@ -1719,8 +1719,8 @@ def hermgauss(deg):
Computes the sample points and weights for Gauss-Hermite quadrature.
These sample points and weights will correctly integrate polynomials of
- degree :math:`2*deg - 1` or less over the interval :math:`[-\inf, \inf]`
- with the weight function :math:`f(x) = \exp(-x^2)`.
+ degree :math:`2*deg - 1` or less over the interval :math:`[-\\inf, \\inf]`
+ with the weight function :math:`f(x) = \\exp(-x^2)`.
Parameters
----------
@@ -1784,8 +1784,8 @@ def hermweight(x):
"""
Weight function of the Hermite polynomials.
- The weight function is :math:`\exp(-x^2)` and the interval of
- integration is :math:`[-\inf, \inf]`. the Hermite polynomials are
+ The weight function is :math:`\\exp(-x^2)` and the interval of
+ integration is :math:`[-\\inf, \\inf]`. the Hermite polynomials are
orthogonal, but not normalized, with respect to this weight function.
Parameters
diff --git a/numpy/polynomial/hermite_e.py b/numpy/polynomial/hermite_e.py
index 8a70acfa2..49888ee09 100644
--- a/numpy/polynomial/hermite_e.py
+++ b/numpy/polynomial/hermite_e.py
@@ -1005,7 +1005,7 @@ def hermegrid2d(x, y, c):
This function returns the values:
- .. math:: p(a,b) = \sum_{i,j} c_{i,j} * H_i(a) * H_j(b)
+ .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * H_i(a) * H_j(b)
where the points `(a, b)` consist of all pairs formed by taking
`a` from `x` and `b` from `y`. The resulting points form a grid with
@@ -1717,8 +1717,8 @@ def hermegauss(deg):
Computes the sample points and weights for Gauss-HermiteE quadrature.
These sample points and weights will correctly integrate polynomials of
- degree :math:`2*deg - 1` or less over the interval :math:`[-\inf, \inf]`
- with the weight function :math:`f(x) = \exp(-x^2/2)`.
+ degree :math:`2*deg - 1` or less over the interval :math:`[-\\inf, \\inf]`
+ with the weight function :math:`f(x) = \\exp(-x^2/2)`.
Parameters
----------
@@ -1781,8 +1781,8 @@ def hermegauss(deg):
def hermeweight(x):
"""Weight function of the Hermite_e polynomials.
- The weight function is :math:`\exp(-x^2/2)` and the interval of
- integration is :math:`[-\inf, \inf]`. the HermiteE polynomials are
+ The weight function is :math:`\\exp(-x^2/2)` and the interval of
+ integration is :math:`[-\\inf, \\inf]`. the HermiteE polynomials are
orthogonal, but not normalized, with respect to this weight function.
Parameters
diff --git a/numpy/polynomial/laguerre.py b/numpy/polynomial/laguerre.py
index ffd032883..49b0a9247 100644
--- a/numpy/polynomial/laguerre.py
+++ b/numpy/polynomial/laguerre.py
@@ -1007,7 +1007,7 @@ def laggrid2d(x, y, c):
This function returns the values:
- .. math:: p(a,b) = \sum_{i,j} c_{i,j} * L_i(a) * L_j(b)
+ .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * L_i(a) * L_j(b)
where the points `(a, b)` consist of all pairs formed by taking
`a` from `x` and `b` from `y`. The resulting points form a grid with
@@ -1674,8 +1674,8 @@ def laggauss(deg):
Computes the sample points and weights for Gauss-Laguerre quadrature.
These sample points and weights will correctly integrate polynomials of
- degree :math:`2*deg - 1` or less over the interval :math:`[0, \inf]`
- with the weight function :math:`f(x) = \exp(-x)`.
+ degree :math:`2*deg - 1` or less over the interval :math:`[0, \\inf]`
+ with the weight function :math:`f(x) = \\exp(-x)`.
Parameters
----------
@@ -1736,7 +1736,7 @@ def lagweight(x):
"""Weight function of the Laguerre polynomials.
The weight function is :math:`exp(-x)` and the interval of integration
- is :math:`[0, \inf]`. The Laguerre polynomials are orthogonal, but not
+ is :math:`[0, \\inf]`. The Laguerre polynomials are orthogonal, but not
normalized, with respect to this weight function.
Parameters
diff --git a/numpy/polynomial/legendre.py b/numpy/polynomial/legendre.py
index 488660545..b54fd2982 100644
--- a/numpy/polynomial/legendre.py
+++ b/numpy/polynomial/legendre.py
@@ -1045,7 +1045,7 @@ def leggrid2d(x, y, c):
This function returns the values:
- .. math:: p(a,b) = \sum_{i,j} c_{i,j} * L_i(a) * L_j(b)
+ .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * L_i(a) * L_j(b)
where the points `(a, b)` consist of all pairs formed by taking
`a` from `x` and `b` from `y`. The resulting points form a grid with
diff --git a/numpy/polynomial/polynomial.py b/numpy/polynomial/polynomial.py
index 95f044a2d..eae2f8692 100644
--- a/numpy/polynomial/polynomial.py
+++ b/numpy/polynomial/polynomial.py
@@ -787,7 +787,7 @@ def polyvalfromroots(x, r, tensor=True):
If `r` is of length `N`, this function returns the value
- .. math:: p(x) = \prod_{n=1}^{N} (x - r_n)
+ .. math:: p(x) = \\prod_{n=1}^{N} (x - r_n)
The parameter `x` is converted to an array only if it is a tuple or a
list, otherwise it is treated as a scalar. In either case, either `x`