diff options
author | Matti Picus <matti.picus@gmail.com> | 2019-03-18 16:13:24 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-03-18 16:13:24 +0200 |
commit | 632afad440193271535a33a89bc3e19c3ecc291c (patch) | |
tree | 1ff979a3a2cc9f9d7d365152ec1c725a51e92e28 /numpy | |
parent | d89c4c7e7850578e5ee61e3e09abd86318906975 (diff) | |
parent | 1872427bb86ab192d2e93311e9a38a409e1d6efa (diff) | |
download | numpy-632afad440193271535a33a89bc3e19c3ecc291c.tar.gz |
Merge pull request #13116 from kshyatt/ksh/linalg
DOC: Add backticks in linalg docstrings.
Diffstat (limited to 'numpy')
-rw-r--r-- | numpy/linalg/linalg.py | 28 |
1 files changed, 14 insertions, 14 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py index 5e6e423a7..29da77655 100644 --- a/numpy/linalg/linalg.py +++ b/numpy/linalg/linalg.py @@ -357,7 +357,7 @@ def solve(a, b): Broadcasting rules apply, see the `numpy.linalg` documentation for details. - The solutions are computed using LAPACK routine _gesv + The solutions are computed using LAPACK routine ``_gesv``. `a` must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use @@ -820,8 +820,8 @@ def qr(a, mode='reduced'): Notes ----- - This is an interface to the LAPACK routines dgeqrf, zgeqrf, - dorgqr, and zungqr. + This is an interface to the LAPACK routines ``dgeqrf``, ``zgeqrf``, + ``dorgqr``, and ``zungqr``. For more information on the qr factorization, see for example: https://en.wikipedia.org/wiki/QR_factorization @@ -1023,7 +1023,7 @@ def eigvals(a): Broadcasting rules apply, see the `numpy.linalg` documentation for details. - This is implemented using the _geev LAPACK routines which compute + This is implemented using the ``_geev`` LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. Examples @@ -1041,7 +1041,7 @@ def eigvals(a): >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0) - Now multiply a diagonal matrix by Q on one side and by Q.T on the other: + Now multiply a diagonal matrix by ``Q`` on one side and by ``Q.T`` on the other: >>> D = np.diag((-1,1)) >>> LA.eigvals(D) @@ -1124,7 +1124,7 @@ def eigvalsh(a, UPLO='L'): Broadcasting rules apply, see the `numpy.linalg` documentation for details. - The eigenvalues are computed using LAPACK routines _syevd, _heevd + The eigenvalues are computed using LAPACK routines ``_syevd``, ``_heevd``. Examples -------- @@ -1228,7 +1228,7 @@ def eig(a): Broadcasting rules apply, see the `numpy.linalg` documentation for details. - This is implemented using the _geev LAPACK routines which compute + This is implemented using the ``_geev`` LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. The number `w` is an eigenvalue of `a` if there exists a vector @@ -1279,7 +1279,7 @@ def eig(a): [0. -0.70710678j, 0. +0.70710678j]]) Complex-valued matrix with real e-values (but complex-valued e-vectors); - note that a.conj().T = a, i.e., a is Hermitian. + note that ``a.conj().T == a``, i.e., `a` is Hermitian. >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) @@ -1374,8 +1374,8 @@ def eigh(a, UPLO='L'): Broadcasting rules apply, see the `numpy.linalg` documentation for details. - The eigenvalues/eigenvectors are computed using LAPACK routines _syevd, - _heevd + The eigenvalues/eigenvectors are computed using LAPACK routines ``_syevd``, + ``_heevd``. The eigenvalues of real symmetric or complex Hermitian matrices are always real. [1]_ The array `v` of (column) eigenvectors is unitary @@ -2019,7 +2019,7 @@ def slogdet(a): .. versionadded:: 1.6.0 The determinant is computed via LU factorization using the LAPACK - routine z/dgetrf. + routine ``z/dgetrf``. Examples @@ -2093,7 +2093,7 @@ def det(a): details. The determinant is computed via LU factorization using the LAPACK - routine z/dgetrf. + routine ``z/dgetrf``. Examples -------- @@ -2288,7 +2288,7 @@ def lstsq(a, b, rcond="warn"): def _multi_svd_norm(x, row_axis, col_axis, op): """Compute a function of the singular values of the 2-D matrices in `x`. - This is a private utility function used by numpy.linalg.norm(). + This is a private utility function used by `numpy.linalg.norm()`. Parameters ---------- @@ -2296,7 +2296,7 @@ def _multi_svd_norm(x, row_axis, col_axis, op): row_axis, col_axis : int The axes of `x` that hold the 2-D matrices. op : callable - This should be either numpy.amin or numpy.amax or numpy.sum. + This should be either numpy.amin or `numpy.amax` or `numpy.sum`. Returns ------- |