summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
authorMatti Picus <matti.picus@gmail.com>2019-03-18 16:13:24 +0200
committerGitHub <noreply@github.com>2019-03-18 16:13:24 +0200
commit632afad440193271535a33a89bc3e19c3ecc291c (patch)
tree1ff979a3a2cc9f9d7d365152ec1c725a51e92e28 /numpy
parentd89c4c7e7850578e5ee61e3e09abd86318906975 (diff)
parent1872427bb86ab192d2e93311e9a38a409e1d6efa (diff)
downloadnumpy-632afad440193271535a33a89bc3e19c3ecc291c.tar.gz
Merge pull request #13116 from kshyatt/ksh/linalg
DOC: Add backticks in linalg docstrings.
Diffstat (limited to 'numpy')
-rw-r--r--numpy/linalg/linalg.py28
1 files changed, 14 insertions, 14 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index 5e6e423a7..29da77655 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -357,7 +357,7 @@ def solve(a, b):
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
- The solutions are computed using LAPACK routine _gesv
+ The solutions are computed using LAPACK routine ``_gesv``.
`a` must be square and of full-rank, i.e., all rows (or, equivalently,
columns) must be linearly independent; if either is not true, use
@@ -820,8 +820,8 @@ def qr(a, mode='reduced'):
Notes
-----
- This is an interface to the LAPACK routines dgeqrf, zgeqrf,
- dorgqr, and zungqr.
+ This is an interface to the LAPACK routines ``dgeqrf``, ``zgeqrf``,
+ ``dorgqr``, and ``zungqr``.
For more information on the qr factorization, see for example:
https://en.wikipedia.org/wiki/QR_factorization
@@ -1023,7 +1023,7 @@ def eigvals(a):
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
- This is implemented using the _geev LAPACK routines which compute
+ This is implemented using the ``_geev`` LAPACK routines which compute
the eigenvalues and eigenvectors of general square arrays.
Examples
@@ -1041,7 +1041,7 @@ def eigvals(a):
>>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :])
(1.0, 1.0, 0.0)
- Now multiply a diagonal matrix by Q on one side and by Q.T on the other:
+ Now multiply a diagonal matrix by ``Q`` on one side and by ``Q.T`` on the other:
>>> D = np.diag((-1,1))
>>> LA.eigvals(D)
@@ -1124,7 +1124,7 @@ def eigvalsh(a, UPLO='L'):
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
- The eigenvalues are computed using LAPACK routines _syevd, _heevd
+ The eigenvalues are computed using LAPACK routines ``_syevd``, ``_heevd``.
Examples
--------
@@ -1228,7 +1228,7 @@ def eig(a):
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
- This is implemented using the _geev LAPACK routines which compute
+ This is implemented using the ``_geev`` LAPACK routines which compute
the eigenvalues and eigenvectors of general square arrays.
The number `w` is an eigenvalue of `a` if there exists a vector
@@ -1279,7 +1279,7 @@ def eig(a):
[0. -0.70710678j, 0. +0.70710678j]])
Complex-valued matrix with real e-values (but complex-valued e-vectors);
- note that a.conj().T = a, i.e., a is Hermitian.
+ note that ``a.conj().T == a``, i.e., `a` is Hermitian.
>>> a = np.array([[1, 1j], [-1j, 1]])
>>> w, v = LA.eig(a)
@@ -1374,8 +1374,8 @@ def eigh(a, UPLO='L'):
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
- The eigenvalues/eigenvectors are computed using LAPACK routines _syevd,
- _heevd
+ The eigenvalues/eigenvectors are computed using LAPACK routines ``_syevd``,
+ ``_heevd``.
The eigenvalues of real symmetric or complex Hermitian matrices are
always real. [1]_ The array `v` of (column) eigenvectors is unitary
@@ -2019,7 +2019,7 @@ def slogdet(a):
.. versionadded:: 1.6.0
The determinant is computed via LU factorization using the LAPACK
- routine z/dgetrf.
+ routine ``z/dgetrf``.
Examples
@@ -2093,7 +2093,7 @@ def det(a):
details.
The determinant is computed via LU factorization using the LAPACK
- routine z/dgetrf.
+ routine ``z/dgetrf``.
Examples
--------
@@ -2288,7 +2288,7 @@ def lstsq(a, b, rcond="warn"):
def _multi_svd_norm(x, row_axis, col_axis, op):
"""Compute a function of the singular values of the 2-D matrices in `x`.
- This is a private utility function used by numpy.linalg.norm().
+ This is a private utility function used by `numpy.linalg.norm()`.
Parameters
----------
@@ -2296,7 +2296,7 @@ def _multi_svd_norm(x, row_axis, col_axis, op):
row_axis, col_axis : int
The axes of `x` that hold the 2-D matrices.
op : callable
- This should be either numpy.amin or numpy.amax or numpy.sum.
+ This should be either numpy.amin or `numpy.amax` or `numpy.sum`.
Returns
-------