summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
authorTravis Oliphant <oliphant@enthought.com>2006-09-15 22:58:26 +0000
committerTravis Oliphant <oliphant@enthought.com>2006-09-15 22:58:26 +0000
commitf74f1d14f0768650a7dd5327944ddcc82f0d892d (patch)
treec77d70405fe39997a650dcb0be3694be85fcede9 /numpy
parent972ae975594790108be7bd3661d0d0be007e048c (diff)
downloadnumpy-f74f1d14f0768650a7dd5327944ddcc82f0d892d.tar.gz
Rename to histogramdd as original author said.
Diffstat (limited to 'numpy')
-rw-r--r--numpy/lib/function_base.py12
-rw-r--r--numpy/lib/tests/test_function_base.py10
2 files changed, 11 insertions, 11 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 435feff80..0ede094f7 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -4,7 +4,7 @@ __all__ = ['logspace', 'linspace',
'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp',
'unique', 'extract', 'place', 'nansum', 'nanmax', 'nanargmax',
'nanargmin', 'nanmin', 'vectorize', 'asarray_chkfinite', 'average',
- 'histogram', 'histogramnd', 'bincount', 'digitize', 'cov',
+ 'histogram', 'histogramdd', 'bincount', 'digitize', 'cov',
'corrcoef', 'msort', 'median', 'sinc', 'hamming', 'hanning',
'bartlett', 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc',
'add_docstring', 'meshgrid', 'delete', 'insert', 'append'
@@ -103,14 +103,14 @@ def histogram(a, bins=10, range=None, normed=False):
else:
return n, bins
-def histogramnd(sample, bins=10, range=None, normed=False):
- """histogramnd(sample, bins = 10, range = None, normed = False) -> H, edges
+def histogramdd(sample, bins=10, range=None, normed=False):
+ """histogramdd(sample, bins = 10, range = None, normed = False) -> H, edges
- Return the N-dimensional histogram computed from sample.
+ Return the D-dimensional histogram computed from sample.
Parameters
----------
- sample: A sequence of N arrays, or an KxN array.
+ sample: A sequence of D arrays, or an NxD array.
bins: A sequence of edge arrays, or a sequence of the number of bins.
If a scalar is given, it is assumed to be the number of bins
for all dimensions.
@@ -126,7 +126,7 @@ def histogramnd(sample, bins=10, range=None, normed=False):
Example:
x = random.randn(100,3)
- H, edges = histogramnd(x, bins = (5, 6, 7))
+ H, edges = histogramdd(x, bins = (5, 6, 7))
See also: histogram
"""
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index a8ccf5eaa..b1d5ec450 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -353,24 +353,24 @@ class test_histogram(NumpyTestCase):
(a,b)=histogram(linspace(0,10,100))
assert(all(a==10))
-class test_histogramnd(NumpyTestCase):
+class test_histogramdd(NumpyTestCase):
def check_simple(self):
x = array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], \
[.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
- H, edges = histogramnd(x, (2,3,3), range = [[-1,1], [0,3], [0,3]])
+ H, edges = histogramdd(x, (2,3,3), range = [[-1,1], [0,3], [0,3]])
answer = asarray([[[0,1,0], [0,0,1], [1,0,0]], [[0,1,0], [0,0,1], [0,0,1]]])
assert(all(H == answer))
# Check normalization
ed = [[-2,0,2], [0,1,2,3], [0,1,2,3]]
- H, edges = histogramnd(x, bins = ed, normed = True)
+ H, edges = histogramdd(x, bins = ed, normed = True)
assert(all(H == answer/12.))
# Check that H has the correct shape.
- H, edges = histogramnd(x, (2,3,4), range = [[-1,1], [0,3], [0,4]], normed=True)
+ H, edges = histogramdd(x, (2,3,4), range = [[-1,1], [0,3], [0,4]], normed=True)
answer = asarray([[[0,1,0,0], [0,0,1,0], [1,0,0,0]], [[0,1,0,0], [0,0,1,0], [0,0,1,0]]])
assert_array_almost_equal(H, answer/6., 4)
# Check that a sequence of arrays is accepted and H has the correct shape.
z = [squeeze(y) for y in split(x,3,axis=1)]
- H, edges = histogramnd(z, bins=(4,3,2),range=[[-2,2], [0,3], [0,2]])
+ H, edges = histogramdd(z, bins=(4,3,2),range=[[-2,2], [0,3], [0,2]])
answer = asarray([[[0,0],[0,0],[0,0]],
[[0,1], [0,0], [1,0]],
[[0,1], [0,0],[0,0]],