summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
authorrgommers <ralf.gommers@googlemail.com>2011-03-06 18:04:45 +0800
committerrgommers <ralf.gommers@googlemail.com>2011-03-06 18:04:45 +0800
commit898e6bdc625cdd3c97865ef99f8d51c5f43eafff (patch)
treea037f0b9347d3cd06415dc594f82a609c9ebda22 /numpy
parentefb3295b06e6595a057f100dfec3fc0c046e3679 (diff)
downloadnumpy-898e6bdc625cdd3c97865ef99f8d51c5f43eafff.tar.gz
TST: add test for random distributions. Closes #1512.
These tests ensure that returned values stay the same, which is necessary because other tests rely on this when setting a fixed seed. Thanks to Vincent Davis.
Diffstat (limited to 'numpy')
-rw-r--r--numpy/random/tests/test_random.py358
1 files changed, 357 insertions, 1 deletions
diff --git a/numpy/random/tests/test_random.py b/numpy/random/tests/test_random.py
index 82216f135..a4aa75380 100644
--- a/numpy/random/tests/test_random.py
+++ b/numpy/random/tests/test_random.py
@@ -1,4 +1,4 @@
-from numpy.testing import TestCase, run_module_suite, assert_
+from numpy.testing import TestCase, run_module_suite, assert_
from numpy import random
import numpy as np
@@ -67,6 +67,362 @@ class TestSetState(TestCase):
"""
self.prng.negative_binomial(0.5, 0.5)
+class TestRandomDist(TestCase):
+ """ Make sure the random distrobution return the correct value for a
+ given seed
+ """
+ def setUp(self):
+ self.seed = 1234567890
+
+ def test_rand(self):
+ np.random.seed(self.seed)
+ actual = np.random.rand(3, 2)
+ desired = np.array([[ 0.61879477158567997, 0.59162362775974664],
+ [ 0.88868358904449662, 0.89165480011560816],
+ [ 0.4575674820298663 , 0.7781880808593471 ]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_randn(self):
+ np.random.seed(self.seed)
+ actual = np.random.randn(3, 2)
+ desired = np.array([[ 1.34016345771863121, 1.73759122771936081],
+ [ 1.498988344300628 , -0.2286433324536169 ],
+ [ 2.031033998682787 , 2.17032494605655257]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_randint(self):
+ np.random.seed(self.seed)
+ actual = np.random.randint(-99, 99, size=(3,2))
+ desired = np.array([[ 31, 3],
+ [-52, 41],
+ [-48, -66]])
+ np.testing.assert_array_equal(actual, desired)
+
+ def test_random_integers(self):
+ np.random.seed(self.seed)
+ actual = np.random.random_integers(-99, 99, size=(3,2))
+ desired = np.array([[ 31, 3],
+ [-52, 41],
+ [-48, -66]])
+ np.testing.assert_array_equal(actual, desired)
+
+ def test_random_sample(self):
+ np.random.seed(self.seed)
+ actual = np.random.random_sample((3, 2))
+ desired = np.array([[ 0.61879477158567997, 0.59162362775974664],
+ [ 0.88868358904449662, 0.89165480011560816],
+ [ 0.4575674820298663 , 0.7781880808593471 ]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_bytes(self):
+ np.random.seed(self.seed)
+ actual = np.random.bytes(10)
+ desired = '\x82Ui\x9e\xff\x97+Wf\xa5'
+ np.testing.assert_string_equal(actual, desired)
+
+ def test_shuffle(self):
+ np.random.seed(self.seed)
+ alist = [1,2,3,4,5,6,7,8,9,0]
+ np.random.shuffle(alist)
+ actual = alist
+ desired = [0, 1, 9, 6, 2, 4, 5, 8, 7, 3]
+ np.testing.assert_array_equal(actual, desired)
+
+ def test_beta(self):
+ np.random.seed(self.seed)
+ actual = np.random.beta(.1, .9, size=(3, 2))
+ desired = np.array([[ 1.45341850513746058e-02, 5.31297615662868145e-04],
+ [ 1.85366619058432324e-06, 4.19214516800110563e-03],
+ [ 1.58405155108498093e-04, 1.26252891949397652e-04]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_binomial(self):
+ np.random.seed(self.seed)
+ actual = np.random.binomial(100.123, .456, size=(3, 2))
+ desired = np.array([[37, 43],
+ [42, 48],
+ [46, 45]])
+ np.testing.assert_array_equal(actual, desired)
+
+ def test_chisquare(self):
+ np.random.seed(self.seed)
+ actual = np.random.chisquare(50, size=(3, 2))
+ desired = np.array([[ 63.87858175501090585, 68.68407748911370447],
+ [ 65.77116116901505904, 47.09686762438974483],
+ [ 72.3828403199695174 , 74.18408615260374006]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_dirichlet(self):
+ np.random.seed(self.seed)
+ alpha = np.array([51.72840233779265162, 39.74494232180943953])
+ actual = np.random.mtrand.dirichlet(alpha, size=(3, 2))
+ desired = np.array([[[ 0.54539444573611562, 0.45460555426388438],
+ [ 0.62345816822039413, 0.37654183177960598]],
+ [[ 0.55206000085785778, 0.44793999914214233],
+ [ 0.58964023305154301, 0.41035976694845688]],
+ [[ 0.59266909280647828, 0.40733090719352177],
+ [ 0.56974431743975207, 0.43025568256024799]]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_exponential(self):
+ np.random.seed(self.seed)
+ actual = np.random.exponential(1.1234, size=(3, 2))
+ desired = np.array([[ 1.08342649775011624, 1.00607889924557314],
+ [ 2.46628830085216721, 2.49668106809923884],
+ [ 0.68717433461363442, 1.69175666993575979]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_f(self):
+ np.random.seed(self.seed)
+ actual = np.random.f(12, 77, size=(3, 2))
+ desired = np.array([[ 1.21975394418575878, 1.75135759791559775],
+ [ 1.44803115017146489, 1.22108959480396262],
+ [ 1.02176975757740629, 1.34431827623300415]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_gamma(self):
+ np.random.seed(self.seed)
+ actual = np.random.gamma(5, 3, size=(3, 2))
+ desired = np.array([[ 24.60509188649287182, 28.54993563207210627],
+ [ 26.13476110204064184, 12.56988482927716078],
+ [ 31.71863275789960568, 33.30143302795922011]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_geometric(self):
+ np.random.seed(self.seed)
+ actual = np.random.geometric(.123456789, size=(3, 2))
+ desired = np.array([[ 8, 7],
+ [17, 17],
+ [ 5, 12]])
+ np.testing.assert_array_equal(actual, desired)
+
+ def test_gumbel(self):
+ np.random.seed(self.seed)
+ actual = np.random.gumbel(loc = .123456789, scale = 2.0, size = (3, 2))
+ desired = np.array([[ 0.19591898743416816, 0.34405539668096674],
+ [-1.4492522252274278 , -1.47374816298446865],
+ [ 1.10651090478803416, -0.69535848626236174]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_hypergeometric(self):
+ np.random.seed(self.seed)
+ actual = np.random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
+ desired = np.array([[10, 10],
+ [10, 10],
+ [ 9, 9]])
+ np.testing.assert_array_equal(actual, desired)
+
+ def test_laplace(self):
+ np.random.seed(self.seed)
+ actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
+ desired = np.array([[ 0.66599721112760157, 0.52829452552221945],
+ [ 3.12791959514407125, 3.18202813572992005],
+ [-0.05391065675859356, 1.74901336242837324]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_logistic(self):
+ np.random.seed(self.seed)
+ actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
+ desired = np.array([[ 1.09232835305011444, 0.8648196662399954 ],
+ [ 4.27818590694950185, 4.33897006346929714],
+ [-0.21682183359214885, 2.63373365386060332]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_lognormal(self):
+ np.random.seed(self.seed)
+ actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
+ desired = np.array([[ 16.50698631688883822, 36.54846706092654784],
+ [ 22.67886599981281748, 0.71617561058995771],
+ [ 65.72798501792723869, 86.84341601437161273]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_logseries(self):
+ np.random.seed(self.seed)
+ actual = np.random.logseries(p=.923456789, size=(3, 2))
+ desired = np.array([[ 2, 2],
+ [ 6, 17],
+ [ 3, 6]])
+ np.testing.assert_array_equal(actual, desired)
+
+ def test_multinomial(self):
+ np.random.seed(self.seed)
+ actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2))
+ desired = np.array([[[4, 3, 5, 4, 2, 2],
+ [5, 2, 8, 2, 2, 1]],
+ [[3, 4, 3, 6, 0, 4],
+ [2, 1, 4, 3, 6, 4]],
+ [[4, 4, 2, 5, 2, 3],
+ [4, 3, 4, 2, 3, 4]]])
+ np.testing.assert_array_equal(actual, desired)
+
+ def test_multivariate_normal(self):
+ np.random.seed(self.seed)
+ mean= (.123456789, 10)
+ cov = [[1,0],[1,0]]
+ size = (3, 2)
+ actual = np.random.multivariate_normal(mean, cov, size)
+ desired = np.array([[[ -1.47027513018564449, 10. ],
+ [ -1.65915081534845532, 10. ]],
+ [[ -2.29186329304599745, 10. ],
+ [ -1.77505606019580053, 10. ]],
+ [[ -0.54970369430044119, 10. ],
+ [ 0.29768848031692957, 10. ]]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_negative_binomial(self):
+ np.random.seed(self.seed)
+ actual = np.random.negative_binomial(n = 100, p = .12345, size = (3, 2))
+ desired = np.array([[848, 841],
+ [892, 611],
+ [779, 647]])
+ np.testing.assert_array_equal(actual, desired)
+
+ def test_noncentral_chisquare(self):
+ np.random.seed(self.seed)
+ actual = np.random.noncentral_chisquare(df = 5, nonc = 5, size = (3, 2))
+ desired = np.array([[ 23.91905354498517511, 13.35324692733826346],
+ [ 31.22452661329736401, 16.60047399466177254],
+ [ 5.03461598262724586, 17.94973089023519464]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_noncentral_f(self):
+ np.random.seed(self.seed)
+ actual = np.random.noncentral_f(dfnum = 5, dfden = 2, nonc = 1,
+ size = (3, 2))
+ desired = np.array([[ 1.40598099674926669, 0.34207973179285761],
+ [ 3.57715069265772545, 7.92632662577829805],
+ [ 0.43741599463544162, 1.1774208752428319 ]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_normal(self):
+ np.random.seed(self.seed)
+ actual = np.random.normal(loc = .123456789, scale = 2.0, size = (3, 2))
+ desired = np.array([[ 2.80378370443726244, 3.59863924443872163],
+ [ 3.121433477601256 , -0.33382987590723379],
+ [ 4.18552478636557357, 4.46410668111310471]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_pareto(self):
+ np.random.seed(self.seed)
+ actual = np.random.pareto(a =.123456789, size = (3, 2))
+ desired = np.array([[ 2.46852460439034849e+03, 1.41286880810518346e+03],
+ [ 5.28287797029485181e+07, 6.57720981047328785e+07],
+ [ 1.40840323350391515e+02, 1.98390255135251704e+05]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_poisson(self):
+ np.random.seed(self.seed)
+ actual = np.random.poisson(lam = .123456789, size=(3, 2))
+ desired = np.array([[0, 0],
+ [1, 0],
+ [0, 0]])
+ np.testing.assert_array_equal(actual, desired)
+
+ def test_power(self):
+ np.random.seed(self.seed)
+ actual = np.random.power(a =.123456789, size = (3, 2))
+ desired = np.array([[ 0.02048932883240791, 0.01424192241128213],
+ [ 0.38446073748535298, 0.39499689943484395],
+ [ 0.00177699707563439, 0.13115505880863756]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_rayleigh(self):
+ np.random.seed(self.seed)
+ actual = np.random.rayleigh(scale = 10, size = (3, 2))
+ desired = np.array([[ 13.8882496494248393 , 13.383318339044731 ],
+ [ 20.95413364294492098, 21.08285015800712614],
+ [ 11.06066537006854311, 17.35468505778271009]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_standard_cauchy(self):
+ np.random.seed(self.seed)
+ actual = np.random.standard_cauchy(size = (3, 2))
+ desired = np.array([[ 0.77127660196445336, -6.55601161955910605],
+ [ 0.93582023391158309, -2.07479293013759447],
+ [-4.74601644297011926, 0.18338989290760804]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_standard_exponential(self):
+ np.random.seed(self.seed)
+ actual = np.random.standard_exponential(size = (3, 2))
+ desired = np.array([[ 0.96441739162374596, 0.89556604882105506],
+ [ 2.1953785836319808 , 2.22243285392490542],
+ [ 0.6116915921431676 , 1.50592546727413201]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_standard_gamma(self):
+ np.random.seed(self.seed)
+ actual = np.random.standard_gamma(shape = 3, size = (3, 2))
+ desired = np.array([[ 5.50841531318455058, 6.62953470301903103],
+ [ 5.93988484943779227, 2.31044849402133989],
+ [ 7.54838614231317084, 8.012756093271868 ]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_standard_normal(self):
+ np.random.seed(self.seed)
+ actual = np.random.standard_normal(size = (3, 2))
+ desired = np.array([[ 1.34016345771863121, 1.73759122771936081],
+ [ 1.498988344300628 , -0.2286433324536169 ],
+ [ 2.031033998682787 , 2.17032494605655257]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_standard_t(self):
+ np.random.seed(self.seed)
+ actual = np.random.standard_t(df = 10, size = (3, 2))
+ desired = np.array([[ 0.97140611862659965, -0.08830486548450577],
+ [ 1.36311143689505321, -0.55317463909867071],
+ [-0.18473749069684214, 0.61181537341755321]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_triangular(self):
+ np.random.seed(self.seed)
+ actual = np.random.triangular(left = 5.12, mode = 10.23, right = 20.34,
+ size = (3, 2))
+ desired = np.array([[ 12.68117178949215784, 12.4129206149193152 ],
+ [ 16.20131377335158263, 16.25692138747600524],
+ [ 11.20400690911820263, 14.4978144835829923 ]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_uniform(self):
+ np.random.seed(self.seed)
+ actual = np.random.uniform(low = 1.23, high=10.54, size = (3, 2))
+ desired = np.array([[ 6.99097932346268003, 6.73801597444323974],
+ [ 9.50364421400426274, 9.53130618907631089],
+ [ 5.48995325769805476, 8.47493103280052118]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+
+ def test_vonmises(self):
+ np.random.seed(self.seed)
+ actual = np.random.vonmises(mu = 1.23, kappa = 1.54, size = (3, 2))
+ desired = np.array([[ 2.28567572673902042, 2.89163838442285037],
+ [ 0.38198375564286025, 2.57638023113890746],
+ [ 1.19153771588353052, 1.83509849681825354]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_wald(self):
+ np.random.seed(self.seed)
+ actual = np.random.wald(mean = 1.23, scale = 1.54, size = (3, 2))
+ desired = np.array([[ 3.82935265715889983, 5.13125249184285526],
+ [ 0.35045403618358717, 1.50832396872003538],
+ [ 0.24124319895843183, 0.22031101461955038]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_weibull(self):
+ np.random.seed(self.seed)
+ actual = np.random.weibull(a = 1.23, size = (3, 2))
+ desired = np.array([[ 0.97097342648766727, 0.91422896443565516],
+ [ 1.89517770034962929, 1.91414357960479564],
+ [ 0.67057783752390987, 1.39494046635066793]])
+ np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_zipf(self):
+ np.random.seed(self.seed)
+ actual = np.random.zipf(a = 1.23, size = (3, 2))
+ desired = np.array([[66, 29],
+ [ 1, 1],
+ [ 3, 13]])
+ np.testing.assert_array_equal(actual, desired)
if __name__ == "__main__":
run_module_suite()