diff options
author | Kevin Sheppard <kevin.k.sheppard@gmail.com> | 2021-02-18 11:04:17 +0000 |
---|---|---|
committer | Kevin Sheppard <kevin.k.sheppard@gmail.com> | 2021-02-24 10:40:30 +0000 |
commit | 95d1f23d3bbbadfe218fabc427f74353ad8aaa7e (patch) | |
tree | 0141ea5936f915d72e81b776a11291a3fbc58131 /numpy | |
parent | 99c7c04eb7bebad0cd17b66b89f303e6ca9d8554 (diff) | |
download | numpy-95d1f23d3bbbadfe218fabc427f74353ad8aaa7e.tar.gz |
ENH/BUG: Add tests and correct typing issues
Add tests for lower level components
Correct errors found in testing
Improve specificity of tests
Other small fixes to docs and typing
Diffstat (limited to 'numpy')
-rw-r--r-- | numpy/random/_generator.pyi | 43 | ||||
-rw-r--r-- | numpy/random/bit_generator.pyi | 45 | ||||
-rw-r--r-- | numpy/random/mtrand.pyi | 2 | ||||
-rw-r--r-- | numpy/random/mtrand.pyx | 2 | ||||
-rw-r--r-- | numpy/typing/tests/data/fail/random.py | 61 | ||||
-rw-r--r-- | numpy/typing/tests/data/pass/random.py | 460 | ||||
-rw-r--r-- | numpy/typing/tests/data/reveal/random.py | 499 | ||||
-rw-r--r-- | numpy/typing/tests/test_typing.py | 5 |
8 files changed, 1077 insertions, 40 deletions
diff --git a/numpy/random/_generator.pyi b/numpy/random/_generator.pyi index 1396c5a32..904cbda3d 100644 --- a/numpy/random/_generator.pyi +++ b/numpy/random/_generator.pyi @@ -76,7 +76,7 @@ class Generator: def __reduce__(self) -> Tuple[Callable[[str], BitGenerator], Tuple[str], Dict[str, Any]]: ... @property def bit_generator(self) -> BitGenerator: ... - def bytes(self, length: int) -> str: ... + def bytes(self, length: int) -> bytes: ... @overload def standard_normal( # type: ignore[misc] self, @@ -279,16 +279,47 @@ class Generator: endpoint: bool = ..., ) -> ndarray[Any, dtype[uint64]]: ... # TODO: Use a TypeVar _T here to get away from Any output? Should be int->ndarray[Any,dtype[int64]], ArrayLike[_T] -> Union[_T, ndarray[Any,Any]] + @overload + def choice( + self, + a: int, + size: None = ..., + replace: bool = ..., + p: Optional[_ArrayLikeFloat_co] = ..., + axis: int = ..., + shuffle: bool = ..., + ) -> int: ... + @overload + def choice( + self, + a: int, + size: _ShapeLike = ..., + replace: bool = ..., + p: Optional[_ArrayLikeFloat_co] = ..., + axis: int = ..., + shuffle: bool = ..., + ) -> ndarray[Any, dtype[int64]]: ... + @overload def choice( self, a: ArrayLike, - size: Optional[_ShapeLike] = ..., + size: None = ..., replace: bool = ..., p: Optional[_ArrayLikeFloat_co] = ..., - axis: Optional[int] = ..., + axis: int = ..., shuffle: bool = ..., ) -> Any: ... @overload + def choice( + self, + a: ArrayLike, + size: _ShapeLike = ..., + replace: bool = ..., + p: Optional[_ArrayLikeFloat_co] = ..., + axis: int = ..., + shuffle: bool = ..., + ) -> ndarray[Any, Any]: ... + @overload def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ... # type: ignore[misc] @overload def uniform( @@ -523,6 +554,8 @@ class Generator: def permuted( self, x: ArrayLike, *, axis: Optional[int] = ..., out: Optional[ndarray[Any, Any]] = ... ) -> ndarray[Any, Any]: ... - def shuffle(self, x: ArrayLike, axis: int = ...) -> Sequence[Any]: ... + def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ... -def default_rng(seed: Union[None, _ArrayLikeInt_co, SeedSequence] = ...) -> Generator: ... +def default_rng( + seed: Union[None, _ArrayLikeInt_co, SeedSequence, BitGenerator, Generator] = ... +) -> Generator: ... diff --git a/numpy/random/bit_generator.pyi b/numpy/random/bit_generator.pyi index 80a2e829b..7f066dbfa 100644 --- a/numpy/random/bit_generator.pyi +++ b/numpy/random/bit_generator.pyi @@ -18,8 +18,8 @@ from typing import ( overload, ) -from numpy import dtype, ndarray, uint32, uint64, unsignedinteger -from numpy.typing import DTypeLike, _ArrayLikeInt_co, _DTypeLikeUInt, _ShapeLike, _SupportsDType +from numpy import dtype, ndarray, uint32, uint64 +from numpy.typing import _ArrayLikeInt_co, _ShapeLike, _SupportsDType, _UInt64Codes, _UInt32Codes if sys.version_info >= (3, 8): from typing import Literal @@ -28,11 +28,17 @@ else: _T = TypeVar("_T") -_UIntType = TypeVar("_UIntType", uint64, uint32) -_DTypeLike = Union[ - Type[_UIntType], - dtype[_UIntType], - _SupportsDType[dtype[_UIntType]], +_DTypeLikeUint32 = Union[ + dtype[uint32], + _SupportsDType[dtype[uint32]], + Type[uint32], + _UInt32Codes, +] +_DTypeLikeUint64 = Union[ + dtype[uint64], + _SupportsDType[dtype[uint64]], + Type[uint64], + _UInt64Codes, ] class _SeedSeqState(TypedDict): @@ -50,30 +56,19 @@ class _Interface(NamedTuple): bit_generator: Any class ISeedSequence(abc.ABC): - @overload - @abc.abstractmethod - def generate_state( - self, n_words: int, dtype: _DTypeLike[_UIntType] = ... - ) -> ndarray[Any, dtype[_UIntType]]: ... - @overload @abc.abstractmethod def generate_state( - self, n_words: int, dtype: _DTypeLikeUInt = ... - ) -> ndarray[Any, dtype[unsignedinteger[Any]]]: ... + self, n_words: int, dtype: Union[_DTypeLikeUint32, _DTypeLikeUint64] = ... + ) -> ndarray[Any, dtype[Union[uint32, uint64]]]: ... class ISpawnableSeedSequence(ISeedSequence): @abc.abstractmethod def spawn(self: _T, n_children: int) -> List[_T]: ... class SeedlessSeedSequence(ISpawnableSeedSequence): - @overload - def generate_state( - self, n_words: int, dtype: _DTypeLike[_UIntType] = ... - ) -> ndarray[Any, dtype[_UIntType]]: ... - @overload def generate_state( - self, n_words: int, dtype: _DTypeLikeUInt = ... - ) -> ndarray[Any, dtype[unsignedinteger[Any]]]: ... + self, n_words: int, dtype: Union[_DTypeLikeUint32, _DTypeLikeUint64] = ... + ) -> ndarray[Any, dtype[Union[uint32, uint64]]]: ... def spawn(self: _T, n_children: int) -> List[_T]: ... class SeedSequence(ISpawnableSeedSequence): @@ -84,7 +79,7 @@ class SeedSequence(ISpawnableSeedSequence): pool: ndarray[Any, dtype[uint32]] def __init__( self, - entropy: Union[None, int, Sequence[int]] = ..., + entropy: Union[None, int, Sequence[int], _ArrayLikeInt_co] = ..., *, spawn_key: Sequence[int] = ..., pool_size: int = ..., @@ -95,7 +90,9 @@ class SeedSequence(ISpawnableSeedSequence): def state( self, ) -> _SeedSeqState: ... - def generate_state(self, n_words: int, dtype: DTypeLike = ...) -> ndarray[Any, Any]: ... + def generate_state( + self, n_words: int, dtype: Union[_DTypeLikeUint32, _DTypeLikeUint64] = ... + ) -> ndarray[Any, dtype[Union[uint32, uint64]]]: ... def spawn(self, n_children: int) -> List[SeedSequence]: ... class BitGenerator(abc.ABC): diff --git a/numpy/random/mtrand.pyi b/numpy/random/mtrand.pyi index c668e7edf..f05635390 100644 --- a/numpy/random/mtrand.pyi +++ b/numpy/random/mtrand.pyi @@ -229,7 +229,7 @@ class RandomState: dtype[uint64], Type[uint64], _UInt64Codes, _SupportsDType[dtype[uint64]] ] = ..., ) -> ndarray[Any, dtype[uint64]]: ... - def bytes(self, length: int) -> str: ... + def bytes(self, length: int) -> bytes: ... def choice( self, a: ArrayLike, diff --git a/numpy/random/mtrand.pyx b/numpy/random/mtrand.pyx index 1fd68111e..40b3ea100 100644 --- a/numpy/random/mtrand.pyx +++ b/numpy/random/mtrand.pyx @@ -784,7 +784,7 @@ cdef class RandomState: Returns ------- - out : str + out : bytes String of length `length`. See Also diff --git a/numpy/typing/tests/data/fail/random.py b/numpy/typing/tests/data/fail/random.py index e69de29bb..c4d1e3e3e 100644 --- a/numpy/typing/tests/data/fail/random.py +++ b/numpy/typing/tests/data/fail/random.py @@ -0,0 +1,61 @@ +import numpy as np +from typing import Any, List + +SEED_FLOAT: float = 457.3 +SEED_ARR_FLOAT: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.0, 2, 3, 4]) +SEED_ARRLIKE_FLOAT: List[float] = [1.0, 2.0, 3.0, 4.0] +SEED_SEED_SEQ: np.random.SeedSequence = np.random.SeedSequence(0) +SEED_STR: str = "String seeding not allowed" +# default rng +np.random.default_rng(SEED_FLOAT) # E: incompatible type +np.random.default_rng(SEED_ARR_FLOAT) # E: incompatible type +np.random.default_rng(SEED_ARRLIKE_FLOAT) # E: incompatible type +np.random.default_rng(SEED_STR) # E: incompatible type + +# Seed Sequence +np.random.SeedSequence(SEED_FLOAT) # E: incompatible type +np.random.SeedSequence(SEED_ARR_FLOAT) # E: incompatible type +np.random.SeedSequence(SEED_ARRLIKE_FLOAT) # E: incompatible type +np.random.SeedSequence(SEED_SEED_SEQ) # E: incompatible type +np.random.SeedSequence(SEED_STR) # E: incompatible type + +seed_seq: np.random.bit_generator.SeedSequence = np.random.SeedSequence() +seed_seq.spawn(11.5) # E: incompatible type +seed_seq.generate_state(3.14) # E: incompatible type +seed_seq.generate_state(3, np.uint8) # E: incompatible type +seed_seq.generate_state(3, "uint8") # E: incompatible type +seed_seq.generate_state(3, "u1") # E: incompatible type +seed_seq.generate_state(3, np.uint16) # E: incompatible type +seed_seq.generate_state(3, "uint16") # E: incompatible type +seed_seq.generate_state(3, "u2") # E: incompatible type +seed_seq.generate_state(3, np.int32) # E: incompatible type +seed_seq.generate_state(3, "int32") # E: incompatible type +seed_seq.generate_state(3, "i4") # E: incompatible type + +# Bit Generators +np.random.MT19937(SEED_FLOAT) # E: incompatible type +np.random.MT19937(SEED_ARR_FLOAT) # E: incompatible type +np.random.MT19937(SEED_ARRLIKE_FLOAT) # E: incompatible type +np.random.MT19937(SEED_STR) # E: incompatible type + +np.random.PCG64(SEED_FLOAT) # E: incompatible type +np.random.PCG64(SEED_ARR_FLOAT) # E: incompatible type +np.random.PCG64(SEED_ARRLIKE_FLOAT) # E: incompatible type +np.random.PCG64(SEED_STR) # E: incompatible type + +np.random.Philox(SEED_FLOAT) # E: incompatible type +np.random.Philox(SEED_ARR_FLOAT) # E: incompatible type +np.random.Philox(SEED_ARRLIKE_FLOAT) # E: incompatible type +np.random.Philox(SEED_STR) # E: incompatible type + +np.random.SFC64(SEED_FLOAT) # E: incompatible type +np.random.SFC64(SEED_ARR_FLOAT) # E: incompatible type +np.random.SFC64(SEED_ARRLIKE_FLOAT) # E: incompatible type +np.random.SFC64(SEED_STR) # E: incompatible type + +# Generator +np.random.Generator(None) # E: incompatible type +np.random.Generator(12333283902830213) # E: incompatible type +np.random.Generator("OxFEEDF00D") # E: incompatible type +np.random.Generator([123, 234]) # E: incompatible type +np.random.Generator(np.array([123, 234], dtype="u4")) # E: incompatible type diff --git a/numpy/typing/tests/data/pass/random.py b/numpy/typing/tests/data/pass/random.py index f5233b0e1..fa3585a90 100644 --- a/numpy/typing/tests/data/pass/random.py +++ b/numpy/typing/tests/data/pass/random.py @@ -1,17 +1,30 @@ +from __future__ import annotations + +from typing import Any, List, Dict + import numpy as np -from typing import Any, List SEED_NONE = None SEED_INT = 4579435749574957634658964293569 SEED_ARR: np.ndarray[Any, np.dtype[np.int64]] = np.array([1, 2, 3, 4], dtype=np.int64) SEED_ARRLIKE: List[int] = [1, 2, 3, 4] +SEED_SEED_SEQ: np.random.SeedSequence = np.random.SeedSequence(0) +SEED_MT19937: np.random.MT19937 = np.random.MT19937(0) +SEED_PCG64: np.random.PCG64 = np.random.PCG64(0) +SEED_PHILOX: np.random.Philox = np.random.Philox(0) +SEED_SFC64: np.random.SFC64 = np.random.SFC64(0) # default rng np.random.default_rng() np.random.default_rng(SEED_NONE) np.random.default_rng(SEED_INT) np.random.default_rng(SEED_ARR) -np.random.default_rng(SEED_ARR) +np.random.default_rng(SEED_ARRLIKE) +np.random.default_rng(SEED_SEED_SEQ) +np.random.default_rng(SEED_MT19937) +np.random.default_rng(SEED_PCG64) +np.random.default_rng(SEED_PHILOX) +np.random.default_rng(SEED_SFC64) # Seed Sequence np.random.SeedSequence(SEED_NONE) @@ -24,18 +37,461 @@ np.random.MT19937(SEED_NONE) np.random.MT19937(SEED_INT) np.random.MT19937(SEED_ARR) np.random.MT19937(SEED_ARRLIKE) +np.random.MT19937(SEED_SEED_SEQ) np.random.PCG64(SEED_NONE) np.random.PCG64(SEED_INT) np.random.PCG64(SEED_ARR) np.random.PCG64(SEED_ARRLIKE) +np.random.PCG64(SEED_SEED_SEQ) np.random.Philox(SEED_NONE) np.random.Philox(SEED_INT) np.random.Philox(SEED_ARR) np.random.Philox(SEED_ARRLIKE) +np.random.Philox(SEED_SEED_SEQ) np.random.SFC64(SEED_NONE) np.random.SFC64(SEED_INT) np.random.SFC64(SEED_ARR) np.random.SFC64(SEED_ARRLIKE) +np.random.SFC64(SEED_SEED_SEQ) + +seed_seq: np.random.bit_generator.SeedSequence = np.random.SeedSequence(SEED_NONE) +seed_seq.spawn(10) +seed_seq.generate_state(3) +seed_seq.generate_state(3, "u4") +seed_seq.generate_state(3, "uint32") +seed_seq.generate_state(3, "u8") +seed_seq.generate_state(3, "uint64") +seed_seq.generate_state(3, np.uint32) +seed_seq.generate_state(3, np.uint64) + + +def_gen: np.random.Generator = np.random.default_rng() + +D_arr_0p1: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.1]) +D_arr_0p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.5]) +D_arr_0p9: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.9]) +D_arr_1p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.5]) +I_arr_10: np.ndarray[Any, np.dtype[np.int_]] = np.array([10], dtype=np.int_) +I_arr_20: np.ndarray[Any, np.dtype[np.int_]] = np.array([20], dtype=np.int_) +D_arr_like_0p1: List[float] = [0.1] +D_arr_like_0p5: List[float] = [0.5] +D_arr_like_0p9: List[float] = [0.9] +D_arr_like_1p5: List[float] = [1.5] +I_arr_like_10: List[int] = [10] +I_arr_like_20: List[int] = [20] +D_2D_like: List[List[float]] = [[1, 2], [2, 3], [3, 4], [4, 5.1]] +D_2D: np.ndarray[Any, np.dtype[np.float64]] = np.array(D_2D_like) + +def_gen.standard_normal() +def_gen.standard_normal(size=None) +def_gen.standard_normal(size=1) + +def_gen.random() +def_gen.random(size=None) +def_gen.random(size=1) + +def_gen.standard_cauchy() +def_gen.standard_cauchy(size=None) +def_gen.standard_cauchy(size=1) + +def_gen.standard_exponential() +def_gen.standard_exponential(size=None) +def_gen.standard_exponential(size=1) + +def_gen.zipf(1.5) +def_gen.zipf(1.5, size=None) +def_gen.zipf(1.5, size=1) +def_gen.zipf(D_arr_1p5) +def_gen.zipf(D_arr_1p5, size=1) +def_gen.zipf(D_arr_like_1p5) +def_gen.zipf(D_arr_like_1p5, size=1) + +def_gen.weibull(0.5) +def_gen.weibull(0.5, size=None) +def_gen.weibull(0.5, size=1) +def_gen.weibull(D_arr_0p5) +def_gen.weibull(D_arr_0p5, size=1) +def_gen.weibull(D_arr_like_0p5) +def_gen.weibull(D_arr_like_0p5, size=1) + +def_gen.standard_t(0.5) +def_gen.standard_t(0.5, size=None) +def_gen.standard_t(0.5, size=1) +def_gen.standard_t(D_arr_0p5) +def_gen.standard_t(D_arr_0p5, size=1) +def_gen.standard_t(D_arr_like_0p5) +def_gen.standard_t(D_arr_like_0p5, size=1) + +def_gen.poisson(0.5) +def_gen.poisson(0.5, size=None) +def_gen.poisson(0.5, size=1) +def_gen.poisson(D_arr_0p5) +def_gen.poisson(D_arr_0p5, size=1) +def_gen.poisson(D_arr_like_0p5) +def_gen.poisson(D_arr_like_0p5, size=1) + +def_gen.power(0.5) +def_gen.power(0.5, size=None) +def_gen.power(0.5, size=1) +def_gen.power(D_arr_0p5) +def_gen.power(D_arr_0p5, size=1) +def_gen.power(D_arr_like_0p5) +def_gen.power(D_arr_like_0p5, size=1) + +def_gen.pareto(0.5) +def_gen.pareto(0.5, size=None) +def_gen.pareto(0.5, size=1) +def_gen.pareto(D_arr_0p5) +def_gen.pareto(D_arr_0p5, size=1) +def_gen.pareto(D_arr_like_0p5) +def_gen.pareto(D_arr_like_0p5, size=1) + +def_gen.chisquare(0.5) +def_gen.chisquare(0.5, size=None) +def_gen.chisquare(0.5, size=1) +def_gen.chisquare(D_arr_0p5) +def_gen.chisquare(D_arr_0p5, size=1) +def_gen.chisquare(D_arr_like_0p5) +def_gen.chisquare(D_arr_like_0p5, size=1) + +def_gen.exponential(0.5) +def_gen.exponential(0.5, size=None) +def_gen.exponential(0.5, size=1) +def_gen.exponential(D_arr_0p5) +def_gen.exponential(D_arr_0p5, size=1) +def_gen.exponential(D_arr_like_0p5) +def_gen.exponential(D_arr_like_0p5, size=1) + +def_gen.geometric(0.5) +def_gen.geometric(0.5, size=None) +def_gen.geometric(0.5, size=1) +def_gen.geometric(D_arr_0p5) +def_gen.geometric(D_arr_0p5, size=1) +def_gen.geometric(D_arr_like_0p5) +def_gen.geometric(D_arr_like_0p5, size=1) + +def_gen.logseries(0.5) +def_gen.logseries(0.5, size=None) +def_gen.logseries(0.5, size=1) +def_gen.logseries(D_arr_0p5) +def_gen.logseries(D_arr_0p5, size=1) +def_gen.logseries(D_arr_like_0p5) +def_gen.logseries(D_arr_like_0p5, size=1) + +def_gen.rayleigh(0.5) +def_gen.rayleigh(0.5, size=None) +def_gen.rayleigh(0.5, size=1) +def_gen.rayleigh(D_arr_0p5) +def_gen.rayleigh(D_arr_0p5, size=1) +def_gen.rayleigh(D_arr_like_0p5) +def_gen.rayleigh(D_arr_like_0p5, size=1) + +def_gen.standard_gamma(0.5) +def_gen.standard_gamma(0.5, size=None) +def_gen.standard_gamma(0.5, size=1) +def_gen.standard_gamma(D_arr_0p5) +def_gen.standard_gamma(D_arr_0p5, size=1) +def_gen.standard_gamma(D_arr_like_0p5) +def_gen.standard_gamma(D_arr_like_0p5, size=1) + +def_gen.vonmises(0.5, 0.5) +def_gen.vonmises(0.5, 0.5, size=None) +def_gen.vonmises(0.5, 0.5, size=1) +def_gen.vonmises(D_arr_0p5, 0.5) +def_gen.vonmises(0.5, D_arr_0p5) +def_gen.vonmises(D_arr_0p5, 0.5, size=1) +def_gen.vonmises(0.5, D_arr_0p5, size=1) +def_gen.vonmises(D_arr_like_0p5, 0.5) +def_gen.vonmises(0.5, D_arr_like_0p5) +def_gen.vonmises(D_arr_0p5, D_arr_0p5) +def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5) +def_gen.vonmises(D_arr_0p5, D_arr_0p5, size=1) +def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.wald(0.5, 0.5) +def_gen.wald(0.5, 0.5, size=None) +def_gen.wald(0.5, 0.5, size=1) +def_gen.wald(D_arr_0p5, 0.5) +def_gen.wald(0.5, D_arr_0p5) +def_gen.wald(D_arr_0p5, 0.5, size=1) +def_gen.wald(0.5, D_arr_0p5, size=1) +def_gen.wald(D_arr_like_0p5, 0.5) +def_gen.wald(0.5, D_arr_like_0p5) +def_gen.wald(D_arr_0p5, D_arr_0p5) +def_gen.wald(D_arr_like_0p5, D_arr_like_0p5) +def_gen.wald(D_arr_0p5, D_arr_0p5, size=1) +def_gen.wald(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.uniform(0.5, 0.5) +def_gen.uniform(0.5, 0.5, size=None) +def_gen.uniform(0.5, 0.5, size=1) +def_gen.uniform(D_arr_0p5, 0.5) +def_gen.uniform(0.5, D_arr_0p5) +def_gen.uniform(D_arr_0p5, 0.5, size=1) +def_gen.uniform(0.5, D_arr_0p5, size=1) +def_gen.uniform(D_arr_like_0p5, 0.5) +def_gen.uniform(0.5, D_arr_like_0p5) +def_gen.uniform(D_arr_0p5, D_arr_0p5) +def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5) +def_gen.uniform(D_arr_0p5, D_arr_0p5, size=1) +def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.beta(0.5, 0.5) +def_gen.beta(0.5, 0.5, size=None) +def_gen.beta(0.5, 0.5, size=1) +def_gen.beta(D_arr_0p5, 0.5) +def_gen.beta(0.5, D_arr_0p5) +def_gen.beta(D_arr_0p5, 0.5, size=1) +def_gen.beta(0.5, D_arr_0p5, size=1) +def_gen.beta(D_arr_like_0p5, 0.5) +def_gen.beta(0.5, D_arr_like_0p5) +def_gen.beta(D_arr_0p5, D_arr_0p5) +def_gen.beta(D_arr_like_0p5, D_arr_like_0p5) +def_gen.beta(D_arr_0p5, D_arr_0p5, size=1) +def_gen.beta(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.f(0.5, 0.5) +def_gen.f(0.5, 0.5, size=None) +def_gen.f(0.5, 0.5, size=1) +def_gen.f(D_arr_0p5, 0.5) +def_gen.f(0.5, D_arr_0p5) +def_gen.f(D_arr_0p5, 0.5, size=1) +def_gen.f(0.5, D_arr_0p5, size=1) +def_gen.f(D_arr_like_0p5, 0.5) +def_gen.f(0.5, D_arr_like_0p5) +def_gen.f(D_arr_0p5, D_arr_0p5) +def_gen.f(D_arr_like_0p5, D_arr_like_0p5) +def_gen.f(D_arr_0p5, D_arr_0p5, size=1) +def_gen.f(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.gamma(0.5, 0.5) +def_gen.gamma(0.5, 0.5, size=None) +def_gen.gamma(0.5, 0.5, size=1) +def_gen.gamma(D_arr_0p5, 0.5) +def_gen.gamma(0.5, D_arr_0p5) +def_gen.gamma(D_arr_0p5, 0.5, size=1) +def_gen.gamma(0.5, D_arr_0p5, size=1) +def_gen.gamma(D_arr_like_0p5, 0.5) +def_gen.gamma(0.5, D_arr_like_0p5) +def_gen.gamma(D_arr_0p5, D_arr_0p5) +def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5) +def_gen.gamma(D_arr_0p5, D_arr_0p5, size=1) +def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.gumbel(0.5, 0.5) +def_gen.gumbel(0.5, 0.5, size=None) +def_gen.gumbel(0.5, 0.5, size=1) +def_gen.gumbel(D_arr_0p5, 0.5) +def_gen.gumbel(0.5, D_arr_0p5) +def_gen.gumbel(D_arr_0p5, 0.5, size=1) +def_gen.gumbel(0.5, D_arr_0p5, size=1) +def_gen.gumbel(D_arr_like_0p5, 0.5) +def_gen.gumbel(0.5, D_arr_like_0p5) +def_gen.gumbel(D_arr_0p5, D_arr_0p5) +def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5) +def_gen.gumbel(D_arr_0p5, D_arr_0p5, size=1) +def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.laplace(0.5, 0.5) +def_gen.laplace(0.5, 0.5, size=None) +def_gen.laplace(0.5, 0.5, size=1) +def_gen.laplace(D_arr_0p5, 0.5) +def_gen.laplace(0.5, D_arr_0p5) +def_gen.laplace(D_arr_0p5, 0.5, size=1) +def_gen.laplace(0.5, D_arr_0p5, size=1) +def_gen.laplace(D_arr_like_0p5, 0.5) +def_gen.laplace(0.5, D_arr_like_0p5) +def_gen.laplace(D_arr_0p5, D_arr_0p5) +def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5) +def_gen.laplace(D_arr_0p5, D_arr_0p5, size=1) +def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.logistic(0.5, 0.5) +def_gen.logistic(0.5, 0.5, size=None) +def_gen.logistic(0.5, 0.5, size=1) +def_gen.logistic(D_arr_0p5, 0.5) +def_gen.logistic(0.5, D_arr_0p5) +def_gen.logistic(D_arr_0p5, 0.5, size=1) +def_gen.logistic(0.5, D_arr_0p5, size=1) +def_gen.logistic(D_arr_like_0p5, 0.5) +def_gen.logistic(0.5, D_arr_like_0p5) +def_gen.logistic(D_arr_0p5, D_arr_0p5) +def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5) +def_gen.logistic(D_arr_0p5, D_arr_0p5, size=1) +def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.lognormal(0.5, 0.5) +def_gen.lognormal(0.5, 0.5, size=None) +def_gen.lognormal(0.5, 0.5, size=1) +def_gen.lognormal(D_arr_0p5, 0.5) +def_gen.lognormal(0.5, D_arr_0p5) +def_gen.lognormal(D_arr_0p5, 0.5, size=1) +def_gen.lognormal(0.5, D_arr_0p5, size=1) +def_gen.lognormal(D_arr_like_0p5, 0.5) +def_gen.lognormal(0.5, D_arr_like_0p5) +def_gen.lognormal(D_arr_0p5, D_arr_0p5) +def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5) +def_gen.lognormal(D_arr_0p5, D_arr_0p5, size=1) +def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.noncentral_chisquare(0.5, 0.5) +def_gen.noncentral_chisquare(0.5, 0.5, size=None) +def_gen.noncentral_chisquare(0.5, 0.5, size=1) +def_gen.noncentral_chisquare(D_arr_0p5, 0.5) +def_gen.noncentral_chisquare(0.5, D_arr_0p5) +def_gen.noncentral_chisquare(D_arr_0p5, 0.5, size=1) +def_gen.noncentral_chisquare(0.5, D_arr_0p5, size=1) +def_gen.noncentral_chisquare(D_arr_like_0p5, 0.5) +def_gen.noncentral_chisquare(0.5, D_arr_like_0p5) +def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5) +def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5) +def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1) +def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.normal(0.5, 0.5) +def_gen.normal(0.5, 0.5, size=None) +def_gen.normal(0.5, 0.5, size=1) +def_gen.normal(D_arr_0p5, 0.5) +def_gen.normal(0.5, D_arr_0p5) +def_gen.normal(D_arr_0p5, 0.5, size=1) +def_gen.normal(0.5, D_arr_0p5, size=1) +def_gen.normal(D_arr_like_0p5, 0.5) +def_gen.normal(0.5, D_arr_like_0p5) +def_gen.normal(D_arr_0p5, D_arr_0p5) +def_gen.normal(D_arr_like_0p5, D_arr_like_0p5) +def_gen.normal(D_arr_0p5, D_arr_0p5, size=1) +def_gen.normal(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.triangular(0.1, 0.5, 0.9) +def_gen.triangular(0.1, 0.5, 0.9, size=None) +def_gen.triangular(0.1, 0.5, 0.9, size=1) +def_gen.triangular(D_arr_0p1, 0.5, 0.9) +def_gen.triangular(0.1, D_arr_0p5, 0.9) +def_gen.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1) +def_gen.triangular(0.1, D_arr_0p5, 0.9, size=1) +def_gen.triangular(D_arr_like_0p1, 0.5, D_arr_0p9) +def_gen.triangular(0.5, D_arr_like_0p5, 0.9) +def_gen.triangular(D_arr_0p1, D_arr_0p5, 0.9) +def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9) +def_gen.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1) +def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1) + +def_gen.noncentral_f(0.1, 0.5, 0.9) +def_gen.noncentral_f(0.1, 0.5, 0.9, size=None) +def_gen.noncentral_f(0.1, 0.5, 0.9, size=1) +def_gen.noncentral_f(D_arr_0p1, 0.5, 0.9) +def_gen.noncentral_f(0.1, D_arr_0p5, 0.9) +def_gen.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1) +def_gen.noncentral_f(0.1, D_arr_0p5, 0.9, size=1) +def_gen.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9) +def_gen.noncentral_f(0.5, D_arr_like_0p5, 0.9) +def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9) +def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9) +def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1) +def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1) + +def_gen.binomial(10, 0.5) +def_gen.binomial(10, 0.5, size=None) +def_gen.binomial(10, 0.5, size=1) +def_gen.binomial(I_arr_10, 0.5) +def_gen.binomial(10, D_arr_0p5) +def_gen.binomial(I_arr_10, 0.5, size=1) +def_gen.binomial(10, D_arr_0p5, size=1) +def_gen.binomial(I_arr_like_10, 0.5) +def_gen.binomial(10, D_arr_like_0p5) +def_gen.binomial(I_arr_10, D_arr_0p5) +def_gen.binomial(I_arr_like_10, D_arr_like_0p5) +def_gen.binomial(I_arr_10, D_arr_0p5, size=1) +def_gen.binomial(I_arr_like_10, D_arr_like_0p5, size=1) + +def_gen.negative_binomial(10, 0.5) +def_gen.negative_binomial(10, 0.5, size=None) +def_gen.negative_binomial(10, 0.5, size=1) +def_gen.negative_binomial(I_arr_10, 0.5) +def_gen.negative_binomial(10, D_arr_0p5) +def_gen.negative_binomial(I_arr_10, 0.5, size=1) +def_gen.negative_binomial(10, D_arr_0p5, size=1) +def_gen.negative_binomial(I_arr_like_10, 0.5) +def_gen.negative_binomial(10, D_arr_like_0p5) +def_gen.negative_binomial(I_arr_10, D_arr_0p5) +def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5) +def_gen.negative_binomial(I_arr_10, D_arr_0p5, size=1) +def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1) + +def_gen.hypergeometric(20, 20, 10) +def_gen.hypergeometric(20, 20, 10, size=None) +def_gen.hypergeometric(20, 20, 10, size=1) +def_gen.hypergeometric(I_arr_20, 20, 10) +def_gen.hypergeometric(20, I_arr_20, 10) +def_gen.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1) +def_gen.hypergeometric(20, I_arr_20, 10, size=1) +def_gen.hypergeometric(I_arr_like_20, 20, I_arr_10) +def_gen.hypergeometric(20, I_arr_like_20, 10) +def_gen.hypergeometric(I_arr_20, I_arr_20, 10) +def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, 10) +def_gen.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1) +def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1) + + +def_gen.bit_generator + +def_gen.bytes(2) + +def_gen.choice(5) +def_gen.choice(5, 3) +def_gen.choice(5, 3, replace=True) +def_gen.choice(5, 3, p=[1 / 5] * 5) +def_gen.choice(5, 3, p=[1 / 5] * 5, replace=False) + +def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"]) +def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3) +def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4) +def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True) +def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4])) + +def_gen.dirichlet([0.5, 0.5]) +def_gen.dirichlet(np.array([0.5, 0.5])) +def_gen.dirichlet(np.array([0.5, 0.5]), size=3) + +def_gen.multinomial(20, [1 / 6.0] * 6) +def_gen.multinomial(20, np.array([0.5, 0.5])) +def_gen.multinomial(20, [1 / 6.0] * 6, size=2) +def_gen.multinomial([[10], [20]], [1 / 6.0] * 6, size=(2, 2)) +def_gen.multinomial(np.array([[10], [20]]), np.array([0.5, 0.5]), size=(2, 2)) + +def_gen.multivariate_hypergeometric([3, 5, 7], 2) +def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2) +def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=4) +def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=(4, 7)) +def_gen.multivariate_hypergeometric([3, 5, 7], 2, method="count") +def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, method="marginals") + +def_gen.multivariate_normal([0.0], [[1.0]]) +def_gen.multivariate_normal([0.0], np.array([[1.0]])) +def_gen.multivariate_normal(np.array([0.0]), [[1.0]]) +def_gen.multivariate_normal([0.0], np.array([[1.0]])) + +def_gen.permutation(10) +def_gen.permutation([1, 2, 3, 4]) +def_gen.permutation(np.array([1, 2, 3, 4])) +def_gen.permutation(D_2D, axis=1) +def_gen.permuted(D_2D) +def_gen.permuted(D_2D_like) +def_gen.permuted(D_2D, axis=1) +def_gen.permuted(D_2D, out=D_2D) +def_gen.permuted(D_2D_like, out=D_2D) +def_gen.permuted(D_2D_like, out=D_2D) +def_gen.permuted(D_2D, axis=1, out=D_2D) + +def_gen.shuffle(np.arange(10)) +def_gen.shuffle([1, 2, 3, 4, 5]) +def_gen.shuffle(D_2D, axis=1) + +def_gen.__str__() +def_gen.__repr__() +def_gen_state: Dict[str, Any] +def_gen_state = def_gen.__getstate__() +def_gen.__setstate__(def_gen_state) diff --git a/numpy/typing/tests/data/reveal/random.py b/numpy/typing/tests/data/reveal/random.py index 9e26f495f..cd1ac014b 100644 --- a/numpy/typing/tests/data/reveal/random.py +++ b/numpy/typing/tests/data/reveal/random.py @@ -1,15 +1,502 @@ +from __future__ import annotations + +from typing import Any, List + import numpy as np def_rng = np.random.default_rng() +seed_seq = np.random.SeedSequence() mt19937 = np.random.MT19937() -pcg64 = np.random.MT19937() +pcg64 = np.random.PCG64() sfc64 = np.random.SFC64() philox = np.random.Philox() +seedless_seq = np.random.bit_generator.SeedlessSeedSequence() + +reveal_type(def_rng) # E: numpy.random._generator.Generator +reveal_type(mt19937) # E: numpy.random._mt19937.MT19937 +reveal_type(pcg64) # E: numpy.random._pcg64.PCG64 +reveal_type(sfc64) # E: numpy.random._sfc64.SFC64 +reveal_type(philox) # E: numpy.random._philox.Philox +reveal_type(seed_seq) # E: numpy.random.bit_generator.SeedSequence +reveal_type(seedless_seq) # E: numpy.random.bit_generator.SeedlessSeedSequence + +mt19937_jumped = mt19937.jumped() +mt19937_jumped3 = mt19937.jumped(3) +mt19937_raw = mt19937.random_raw() +mt19937_raw_arr = mt19937.random_raw(5) + +reveal_type(mt19937_jumped) # E: numpy.random._mt19937.MT19937 +reveal_type(mt19937_jumped3) # E: numpy.random._mt19937.MT19937 +reveal_type(mt19937_raw) # E: int +reveal_type(mt19937_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(mt19937.lock) # E: threading.Lock + +pcg64_jumped = pcg64.jumped() +pcg64_jumped3 = pcg64.jumped(3) +pcg64_adv = pcg64.advance(3) +pcg64_raw = pcg64.random_raw() +pcg64_raw_arr = pcg64.random_raw(5) + +reveal_type(pcg64_jumped) # E: numpy.random._pcg64.PCG64 +reveal_type(pcg64_jumped3) # E: numpy.random._pcg64.PCG64 +reveal_type(pcg64_adv) # E: numpy.random._pcg64.PCG64 +reveal_type(pcg64_raw) # E: int +reveal_type(pcg64_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(pcg64.lock) # E: threading.Lock + +philox_jumped = philox.jumped() +philox_jumped3 = philox.jumped(3) +philox_adv = philox.advance(3) +philox_raw = philox.random_raw() +philox_raw_arr = philox.random_raw(5) + +reveal_type(philox_jumped) # E: numpy.random._philox.Philox +reveal_type(philox_jumped3) # E: numpy.random._philox.Philox +reveal_type(philox_adv) # E: numpy.random._philox.Philox +reveal_type(philox_raw) # E: int +reveal_type(philox_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(philox.lock) # E: threading.Lock + +sfc64_raw = sfc64.random_raw() +sfc64_raw_arr = sfc64.random_raw(5) + +reveal_type(sfc64_raw) # E: int +reveal_type(sfc64_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(sfc64.lock) # E: threading.Lock + +reveal_type(seed_seq.pool) # numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] +reveal_type(seed_seq.entropy) # E:Union[None, int, Sequence[int]] +reveal_type(seed_seq.spawn(1)) # E: list[numpy.random.bit_generator.SeedSequence] +reveal_type(seed_seq.generate_state(8, "uint32")) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.unsignedinteger[numpy.typing._32Bit], numpy.unsignedinteger[numpy.typing._64Bit]]]] +reveal_type(seed_seq.generate_state(8, "uint64")) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.unsignedinteger[numpy.typing._32Bit], numpy.unsignedinteger[numpy.typing._64Bit]]]] + + +def_gen: np.random.Generator = np.random.default_rng() + +D_arr_0p1: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.1]) +D_arr_0p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.5]) +D_arr_0p9: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.9]) +D_arr_1p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.5]) +I_arr_10: np.ndarray[Any, np.dtype[np.int_]] = np.array([10], dtype=np.int_) +I_arr_20: np.ndarray[Any, np.dtype[np.int_]] = np.array([20], dtype=np.int_) +D_arr_like_0p1: List[float] = [0.1] +D_arr_like_0p5: List[float] = [0.5] +D_arr_like_0p9: List[float] = [0.9] +D_arr_like_1p5: List[float] = [1.5] +I_arr_like_10: List[int] = [10] +I_arr_like_20: List[int] = [20] +D_2D_like: List[List[float]] = [[1, 2], [2, 3], [3, 4], [4, 5.1]] +D_2D: np.ndarray[Any, np.dtype[np.float64]] = np.array(D_2D_like) + +reveal_type(def_gen.standard_normal()) # E: float +reveal_type(def_gen.standard_normal(size=None)) # E: float +reveal_type(def_gen.standard_normal(size=1)) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.floating[numpy.typing._32Bit], numpy.floating[numpy.typing._64Bit]]] + +reveal_type(def_gen.random()) # E: float +reveal_type(def_gen.random(size=None)) # E: float +reveal_type(def_gen.random(size=1)) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.floating[numpy.typing._32Bit], numpy.floating[numpy.typing._64Bit]]] + +reveal_type(def_gen.standard_cauchy()) # E: float +reveal_type(def_gen.standard_cauchy(size=None)) # E: float +reveal_type(def_gen.standard_cauchy(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.standard_exponential()) # E: float +reveal_type(def_gen.standard_exponential(size=None)) # E: float +reveal_type(def_gen.standard_exponential(size=1)) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.floating[numpy.typing._32Bit], numpy.floating[numpy.typing._64Bit]]] + +reveal_type(def_gen.zipf(1.5)) # E: int +reveal_type(def_gen.zipf(1.5, size=None)) # E: int +reveal_type(def_gen.zipf(1.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.zipf(D_arr_1p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.zipf(D_arr_1p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.zipf(D_arr_like_1p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.zipf(D_arr_like_1p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] + +reveal_type(def_gen.weibull(0.5)) # E: float +reveal_type(def_gen.weibull(0.5, size=None)) # E: float +reveal_type(def_gen.weibull(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.weibull(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.weibull(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.weibull(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.weibull(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.standard_t(0.5)) # E: float +reveal_type(def_gen.standard_t(0.5, size=None)) # E: float +reveal_type(def_gen.standard_t(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.standard_t(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.standard_t(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.standard_t(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.standard_t(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.poisson(0.5)) # E: int +reveal_type(def_gen.poisson(0.5, size=None)) # E: int +reveal_type(def_gen.poisson(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.poisson(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.poisson(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.poisson(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.poisson(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] + +reveal_type(def_gen.power(0.5)) # E: float +reveal_type(def_gen.power(0.5, size=None)) # E: float +reveal_type(def_gen.power(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.power(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.power(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.power(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.power(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.pareto(0.5)) # E: float +reveal_type(def_gen.pareto(0.5, size=None)) # E: float +reveal_type(def_gen.pareto(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.pareto(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.pareto(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.pareto(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.pareto(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.chisquare(0.5)) # E: float +reveal_type(def_gen.chisquare(0.5, size=None)) # E: float +reveal_type(def_gen.chisquare(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.chisquare(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.chisquare(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.chisquare(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.chisquare(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.exponential(0.5)) # E: float +reveal_type(def_gen.exponential(0.5, size=None)) # E: float +reveal_type(def_gen.exponential(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.exponential(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.exponential(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.exponential(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.exponential(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.geometric(0.5)) # E: int +reveal_type(def_gen.geometric(0.5, size=None)) # E: int +reveal_type(def_gen.geometric(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.geometric(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.geometric(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.geometric(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.geometric(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] + +reveal_type(def_gen.logseries(0.5)) # E: int +reveal_type(def_gen.logseries(0.5, size=None)) # E: int +reveal_type(def_gen.logseries(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.logseries(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.logseries(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.logseries(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.logseries(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] + +reveal_type(def_gen.rayleigh(0.5)) # E: float +reveal_type(def_gen.rayleigh(0.5, size=None)) # E: float +reveal_type(def_gen.rayleigh(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.rayleigh(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.rayleigh(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.rayleigh(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.rayleigh(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.standard_gamma(0.5)) # E: float +reveal_type(def_gen.standard_gamma(0.5, size=None)) # E: float +reveal_type(def_gen.standard_gamma(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.floating[numpy.typing._32Bit], numpy.floating[numpy.typing._64Bit]]] +reveal_type(def_gen.standard_gamma(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.floating[numpy.typing._32Bit], numpy.floating[numpy.typing._64Bit]]] +reveal_type(def_gen.standard_gamma(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.floating[numpy.typing._32Bit], numpy.floating[numpy.typing._64Bit]]] +reveal_type(def_gen.standard_gamma(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.floating[numpy.typing._32Bit], numpy.floating[numpy.typing._64Bit]]] +reveal_type(def_gen.standard_gamma(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.floating[numpy.typing._32Bit], numpy.floating[numpy.typing._64Bit]]] + +reveal_type(def_gen.vonmises(0.5, 0.5)) # E: float +reveal_type(def_gen.vonmises(0.5, 0.5, size=None)) # E: float +reveal_type(def_gen.vonmises(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.vonmises(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.vonmises(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.vonmises(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.wald(0.5, 0.5)) # E: float +reveal_type(def_gen.wald(0.5, 0.5, size=None)) # E: float +reveal_type(def_gen.wald(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.wald(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.wald(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.wald(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.wald(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.wald(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.wald(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.wald(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.wald(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.wald(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.wald(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.uniform(0.5, 0.5)) # E: float +reveal_type(def_gen.uniform(0.5, 0.5, size=None)) # E: float +reveal_type(def_gen.uniform(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.uniform(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.uniform(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.uniform(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.beta(0.5, 0.5)) # E: float +reveal_type(def_gen.beta(0.5, 0.5, size=None)) # E: float +reveal_type(def_gen.beta(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.beta(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.beta(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.beta(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.beta(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.beta(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.beta(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.beta(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.beta(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.beta(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.beta(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.f(0.5, 0.5)) # E: float +reveal_type(def_gen.f(0.5, 0.5, size=None)) # E: float +reveal_type(def_gen.f(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.f(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.f(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.f(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.f(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.f(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.f(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.f(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.f(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.f(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.f(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.gamma(0.5, 0.5)) # E: float +reveal_type(def_gen.gamma(0.5, 0.5, size=None)) # E: float +reveal_type(def_gen.gamma(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gamma(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gamma(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gamma(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.gumbel(0.5, 0.5)) # E: float +reveal_type(def_gen.gumbel(0.5, 0.5, size=None)) # E: float +reveal_type(def_gen.gumbel(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gumbel(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gumbel(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gumbel(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.laplace(0.5, 0.5)) # E: float +reveal_type(def_gen.laplace(0.5, 0.5, size=None)) # E: float +reveal_type(def_gen.laplace(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.laplace(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.laplace(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.laplace(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.logistic(0.5, 0.5)) # E: float +reveal_type(def_gen.logistic(0.5, 0.5, size=None)) # E: float +reveal_type(def_gen.logistic(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.logistic(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.logistic(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.logistic(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.lognormal(0.5, 0.5)) # E: float +reveal_type(def_gen.lognormal(0.5, 0.5, size=None)) # E: float +reveal_type(def_gen.lognormal(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.lognormal(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.lognormal(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.lognormal(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.noncentral_chisquare(0.5, 0.5)) # E: float +reveal_type(def_gen.noncentral_chisquare(0.5, 0.5, size=None)) # E: float +reveal_type(def_gen.noncentral_chisquare(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.normal(0.5, 0.5)) # E: float +reveal_type(def_gen.normal(0.5, 0.5, size=None)) # E: float +reveal_type(def_gen.normal(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.normal(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.normal(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.normal(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.normal(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.normal(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.normal(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.normal(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.normal(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.normal(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.normal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.triangular(0.1, 0.5, 0.9)) # E: float +reveal_type(def_gen.triangular(0.1, 0.5, 0.9, size=None)) # E: float +reveal_type(def_gen.triangular(0.1, 0.5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_0p1, 0.5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.triangular(0.1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.triangular(0.1, D_arr_0p5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.triangular(0.5, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_0p1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.noncentral_f(0.1, 0.5, 0.9)) # E: float +reveal_type(def_gen.noncentral_f(0.1, 0.5, 0.9, size=None)) # E: float +reveal_type(def_gen.noncentral_f(0.1, 0.5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_0p1, 0.5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_f(0.1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_f(0.1, D_arr_0p5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_f(0.5, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.binomial(10, 0.5)) # E: int +reveal_type(def_gen.binomial(10, 0.5, size=None)) # E: int +reveal_type(def_gen.binomial(10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.binomial(I_arr_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.binomial(10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.binomial(I_arr_10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.binomial(10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.binomial(I_arr_like_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.binomial(10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.binomial(I_arr_10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.binomial(I_arr_like_10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.binomial(I_arr_10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] + +reveal_type(def_gen.negative_binomial(10, 0.5)) # E: int +reveal_type(def_gen.negative_binomial(10, 0.5, size=None)) # E: int +reveal_type(def_gen.negative_binomial(10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.negative_binomial(I_arr_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.negative_binomial(10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.negative_binomial(I_arr_10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.negative_binomial(10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.negative_binomial(I_arr_like_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.negative_binomial(10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.negative_binomial(I_arr_10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.negative_binomial(I_arr_10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] + +reveal_type(def_gen.hypergeometric(20, 20, 10)) # E: int +reveal_type(def_gen.hypergeometric(20, 20, 10, size=None)) # E: int +reveal_type(def_gen.hypergeometric(20, 20, 10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.hypergeometric(I_arr_20, 20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.hypergeometric(20, I_arr_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.hypergeometric(20, I_arr_20, 10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.hypergeometric(I_arr_like_20, 20, I_arr_10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.hypergeometric(20, I_arr_like_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.hypergeometric(I_arr_20, I_arr_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] + + +reveal_type(def_gen.bit_generator) # E: BitGenerator + +reveal_type(def_gen.bytes(2)) # E: bytes + +reveal_type(def_gen.choice(5)) # E: int +reveal_type(def_gen.choice(5, 3)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.choice(5, 3, replace=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.choice(5, 3, p=[1 / 5] * 5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.choice(5, 3, p=[1 / 5] * 5, replace=False)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] + +reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"])) # E: Any +reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3)) # E: numpy.ndarray[Any, Any] +reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4)) # E: numpy.ndarray[Any, Any] +reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True)) # E: numpy.ndarray[Any, Any] +reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4]))) # E: numpy.ndarray[Any, Any] + +reveal_type(def_gen.dirichlet([0.5, 0.5])) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.dirichlet(np.array([0.5, 0.5]))) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.dirichlet(np.array([0.5, 0.5]), size=3)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] + +reveal_type(def_gen.multinomial(20, [1 / 6.0] * 6)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.multinomial(20, np.array([0.5, 0.5]))) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.multinomial(20, [1 / 6.0] * 6, size=2)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.multinomial([[10], [20]], [1 / 6.0] * 6, size=(2, 2))) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.multinomial(np.array([[10], [20]]), np.array([0.5, 0.5]), size=(2, 2))) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] + +reveal_type(def_gen.multivariate_hypergeometric([3, 5, 7], 2)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=4)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=(4, 7))) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.multivariate_hypergeometric([3, 5, 7], 2, method="count")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, method="marginals")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] + +reveal_type(def_gen.multivariate_normal([0.0], [[1.0]])) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.multivariate_normal([0.0], np.array([[1.0]]))) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.multivariate_normal(np.array([0.0]), [[1.0]])) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.multivariate_normal([0.0], np.array([[1.0]]))) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.permutation(10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]] +reveal_type(def_gen.permutation([1, 2, 3, 4])) # E: numpy.ndarray[Any, Any] +reveal_type(def_gen.permutation(np.array([1, 2, 3, 4]))) # E: numpy.ndarray[Any, Any] +reveal_type(def_gen.permutation(D_2D, axis=1)) # E: numpy.ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D)) # E: numpy.ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D_like)) # E: numpy.ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D, axis=1)) # E: numpy.ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D, out=D_2D)) # E: numpy.ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D_like, out=D_2D)) # E: numpy.ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D_like, out=D_2D)) # E: numpy.ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D, axis=1, out=D_2D)) # E: numpy.ndarray[Any, Any] -reveal_type(def_rng) # E: np.random.MT19937 -reveal_type(mt19937) # E: np.random.Generator -reveal_type(pcg64) # E: np.random.MT19937 -reveal_type(sfc64) # E: np.random.SFC64 -reveal_type(philox) # E: np.random.Philox +reveal_type(def_gen.shuffle(np.arange(10))) # E: None +reveal_type(def_gen.shuffle([1, 2, 3, 4, 5])) # E: None +reveal_type(def_gen.shuffle(D_2D, axis=1)) # E: None +reveal_type(def_gen.shuffle(D_2D_like, axis=1)) # E: None +reveal_type(np.random.Generator(pcg64)) # E: Generator +reveal_type(def_gen.__str__()) # E: str +reveal_type(def_gen.__repr__()) # E: str +def_gen_state = def_gen.__getstate__() +reveal_type(def_gen_state) # E: builtins.dict[builtins.str, Any] +reveal_type(def_gen.__setstate__(def_gen_state)) # E: None diff --git a/numpy/typing/tests/test_typing.py b/numpy/typing/tests/test_typing.py index e80282420..70355dcd9 100644 --- a/numpy/typing/tests/test_typing.py +++ b/numpy/typing/tests/test_typing.py @@ -48,8 +48,11 @@ def run_mypy() -> None: The mypy results are cached in `OUTPUT_MYPY` for further use. + The cache refresh can be skipped using + + NUMPY_TYPING_TEST_CLEAR_CACHE=0 pytest numpy/typing/tests """ - if os.path.isdir(CACHE_DIR): + if os.path.isdir(CACHE_DIR) and bool(os.environ.get("NUMPY_TYPING_TEST_CLEAR_CACHE", True)): shutil.rmtree(CACHE_DIR) for directory in (PASS_DIR, REVEAL_DIR, FAIL_DIR, MISC_DIR): |