summaryrefslogtreecommitdiff
path: root/site.cfg.example
diff options
context:
space:
mode:
authormattip <matti.picus@gmail.com>2020-01-17 07:53:17 +1100
committermattip <matti.picus@gmail.com>2020-01-20 08:39:54 +1100
commit7471b5610e9cba0ecb73b6ea96bd132359530645 (patch)
tree625aceaba52bd4fea7e9db50da6e5d2c2452f026 /site.cfg.example
parent57e20038e4efac1a7b4828881c3f8fe6438b3c11 (diff)
downloadnumpy-7471b5610e9cba0ecb73b6ea96bd132359530645.tar.gz
DOC: link and cleanup docstrings in site.cfg.example
Diffstat (limited to 'site.cfg.example')
-rw-r--r--site.cfg.example42
1 files changed, 20 insertions, 22 deletions
diff --git a/site.cfg.example b/site.cfg.example
index cff076381..236c26e6a 100644
--- a/site.cfg.example
+++ b/site.cfg.example
@@ -40,7 +40,7 @@
# List of directories to add to the header file search path.
# include_dirs = /usr/include:/usr/local/include
#
-# src_dirs
+# src_dirs
# List of directories that contain extracted source code for the
# dependency. For some dependencies, numpy.distutils will be able to build
# them from source if binaries cannot be found. The FORTRAN BLAS and
@@ -56,7 +56,7 @@
# search_static_first = false
#
# runtime_library_dirs/rpath
-# List of directories that contains the libraries that should be
+# List of directories that contains the libraries that should be
# used at runtime, thereby disregarding the LD_LIBRARY_PATH variable.
# See 'library_dirs' for formatting on different platforms.
# runtime_library_dirs = /opt/blas/lib:/opt/lapack/lib
@@ -79,14 +79,12 @@
# Defaults
# ========
-# The settings given here will apply to all other sections if not overridden.
+# The settings here will apply to all sections as general defaults
# This is a good place to add general library and include directories like
# /usr/local/{lib,include}
-#
-#[ALL]
+#[DEFAULT]
#library_dirs = /usr/local/lib
#include_dirs = /usr/local/include
-#
# ATLAS
# -----
@@ -108,7 +106,7 @@
# for your configuration (in the following example we installed OpenBLAS with
# ``make install PREFIX=/opt/OpenBLAS``.
# OpenBLAS is generically installed as a shared library, to force the OpenBLAS
-# library linked to also be used at runtime you can utilize the
+# library linked to also be used at runtime you can utilize the
# runtime_library_dirs variable.
#
# **Warning**: OpenBLAS, by default, is built in multithreaded mode. Due to the
@@ -215,26 +213,26 @@
# runtime_library_dirs = /home/username/flame/lib
# MKL
-#----
-# Intel MKL is Intel's very optimized yet proprietary implementation of BLAS and
+#----
+# Intel MKL is Intel's very optimized yet proprietary implementation of BLAS and
# LAPACK. Find the latest info on building NumPy with Intel MKL in this article:
# https://software.intel.com/en-us/articles/numpyscipy-with-intel-mkl
-# Assuming you installed the mkl in /opt/intel/compilers_and_libraries_2018/linux/mkl,
-# for 64 bits code at Linux:
-# [mkl]
+# Assuming you installed the mkl in /opt/intel/compilers_and_libraries_2018/linux/mkl,
+# for 64 bits code at Linux:
+# [mkl]
# library_dirs = /opt/intel/compilers_and_libraries_2018/linux/mkl/lib/intel64
-# include_dirs = /opt/intel/compilers_and_libraries_2018/linux/mkl/include
+# include_dirs = /opt/intel/compilers_and_libraries_2018/linux/mkl/include
# libraries = mkl_rt
-#
-# For 32 bit code at Linux:
+#
+# For 32 bit code at Linux:
# [mkl]
# library_dirs = /opt/intel/compilers_and_libraries_2018/linux/mkl/lib/ia32
-# include_dirs = /opt/intel/compilers_and_libraries_2018/linux/mkl/include
+# include_dirs = /opt/intel/compilers_and_libraries_2018/linux/mkl/include
# libraries = mkl_rt
-#
-# On win-64, the following options compiles NumPy with the MKL library
-# dynamically linked.
-# [mkl]
+#
+# On win-64, the following options compiles NumPy with the MKL library
+# dynamically linked.
+# [mkl]
# include_dirs = C:\Program Files (x86)\IntelSWTools\compilers_and_libraries_2018\windows\mkl\include
# library_dirs = C:\Program Files (x86)\IntelSWTools\compilers_and_libraries_2018\windows\mkl\lib\intel64
# libraries = mkl_rt
@@ -249,7 +247,7 @@
# UMFPACK
# -------
-# The UMFPACK library is used in scikits.umfpack to factor large sparse matrices.
+# The UMFPACK library is used in scikits.umfpack to factor large sparse matrices.
# It, in turn, depends on the AMD library for reordering the matrices for
# better performance. Note that the AMD library has nothing to do with AMD
# (Advanced Micro Devices), the CPU company.
@@ -279,7 +277,7 @@
#[fftw]
#libraries = fftw3
#
-# For djbfft, numpy.distutils will look for either djbfft.a or libdjbfft.a .
+# For djbfft, numpy.distutils will look for either djbfft.a or libdjbfft.a .
#[djbfft]
#include_dirs = /usr/local/djbfft/include
#library_dirs = /usr/local/djbfft/lib