diff options
-rw-r--r-- | numpy/core/tests/test_multiarray.py | 87 | ||||
-rw-r--r-- | numpy/core/tests/test_regression.py | 111 | ||||
-rwxr-xr-x | numpy/doc/swig/test/testArray.py | 26 | ||||
-rw-r--r-- | numpy/f2py/f90mod_rules.py | 12 | ||||
-rw-r--r-- | numpy/fft/tests/test_fftpack.py | 14 | ||||
-rw-r--r-- | numpy/numarray/functions.py | 105 |
6 files changed, 180 insertions, 175 deletions
diff --git a/numpy/core/tests/test_multiarray.py b/numpy/core/tests/test_multiarray.py index 1baed8978..c59fa48be 100644 --- a/numpy/core/tests/test_multiarray.py +++ b/numpy/core/tests/test_multiarray.py @@ -1,9 +1,8 @@ +import tempfile + +import numpy as np from numpy.testing import * from numpy.core import * -from numpy import random -import numpy as N - -import tempfile class TestFlags(NumpyTestCase): def setUp(self): @@ -357,7 +356,7 @@ class TestStringCompare(NumpyTestCase): class TestArgmax(NumpyTestCase): def check_all(self): - a = random.normal(0,1,(4,5,6,7,8)) + a = np.random.normal(0,1,(4,5,6,7,8)) for i in xrange(a.ndim): amax = a.max(i) aargmax = a.argmax(i) @@ -373,8 +372,8 @@ class TestNewaxis(NumpyTestCase): class TestClip(NumpyTestCase): def _check_range(self,x,cmin,cmax): - assert N.all(x >= cmin) - assert N.all(x <= cmax) + assert np.all(x >= cmin) + assert np.all(x <= cmax) def _clip_type(self,type_group,array_max, clip_min,clip_max,inplace=False, @@ -384,16 +383,16 @@ class TestClip(NumpyTestCase): if expected_max is None: expected_max = clip_max - for T in N.sctypes[type_group]: + for T in np.sctypes[type_group]: if sys.byteorder == 'little': byte_orders = ['=','>'] else: byte_orders = ['<','='] for byteorder in byte_orders: - dtype = N.dtype(T).newbyteorder(byteorder) + dtype = np.dtype(T).newbyteorder(byteorder) - x = (N.random.random(1000) * array_max).astype(dtype) + x = (np.random.random(1000) * array_max).astype(dtype) if inplace: x.clip(clip_min,clip_max,x) else: @@ -417,46 +416,46 @@ class TestClip(NumpyTestCase): x = self._clip_type('uint',1024,0,0, inplace=inplace) def check_record_array(self): - rec = N.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], + rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')]) y = rec['x'].clip(-0.3,0.5) self._check_range(y,-0.3,0.5) def check_max_or_min(self): - val = N.array([0,1,2,3,4,5,6,7]) + val = np.array([0,1,2,3,4,5,6,7]) x = val.clip(3) - assert N.all(x >= 3) + assert np.all(x >= 3) x = val.clip(min=3) - assert N.all(x >= 3) + assert np.all(x >= 3) x = val.clip(max=4) - assert N.all(x <= 4) + assert np.all(x <= 4) class TestPutmask(ParametricTestCase): def tst_basic(self,x,T,mask,val): - N.putmask(x,mask,val) - assert N.all(x[mask] == T(val)) + np.putmask(x,mask,val) + assert np.all(x[mask] == T(val)) assert x.dtype == T def testip_types(self): - unchecked_types = [str,unicode,N.void,object] + unchecked_types = [str, unicode, np.void, object] - x = N.random.random(1000)*100 + x = np.random.random(1000)*100 mask = x < 40 tests = [] for val in [-100,0,15]: - for types in N.sctypes.itervalues(): + for types in np.sctypes.itervalues(): tests.extend([(self.tst_basic,x.copy().astype(T),T,mask,val) for T in types if T not in unchecked_types]) return tests def test_mask_size(self): - self.failUnlessRaises(ValueError,N.putmask, - N.array([1,2,3]),[True],5) + self.failUnlessRaises(ValueError, np.putmask, + np.array([1,2,3]), [True], 5) def tst_byteorder(self,dtype): - x = N.array([1,2,3],dtype) - N.putmask(x,[True,False,True],-1) + x = np.array([1,2,3],dtype) + np.putmask(x,[True,False,True],-1) assert_array_equal(x,[-1,2,-1]) def testip_byteorder(self): @@ -464,46 +463,46 @@ class TestPutmask(ParametricTestCase): def test_record_array(self): # Note mixed byteorder. - rec = N.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], + rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')]) - N.putmask(rec['x'],[True,False],10) + np.putmask(rec['x'],[True,False],10) assert_array_equal(rec['x'],[10,5]) - N.putmask(rec['y'],[True,False],10) + np.putmask(rec['y'],[True,False],10) assert_array_equal(rec['y'],[10,4]) def test_masked_array(self): - ## x = N.array([1,2,3]) - ## z = N.ma.array(x,mask=[True,False,False]) - ## N.putmask(z,[True,True,True],3) + ## x = np.array([1,2,3]) + ## z = np.ma.array(x,mask=[True,False,False]) + ## np.putmask(z,[True,True,True],3) pass class TestLexsort(NumpyTestCase): def test_basic(self): a = [1,2,1,3,1,5] b = [0,4,5,6,2,3] - idx = N.lexsort((b,a)) - expected_idx = N.array([0,4,2,1,3,5]) + idx = np.lexsort((b,a)) + expected_idx = np.array([0,4,2,1,3,5]) assert_array_equal(idx,expected_idx) - x = N.vstack((b,a)) - idx = N.lexsort(x) + x = np.vstack((b,a)) + idx = np.lexsort(x) assert_array_equal(idx,expected_idx) - assert_array_equal(x[1][idx],N.sort(x[1])) + assert_array_equal(x[1][idx],np.sort(x[1])) class TestFromToFile(NumpyTestCase): def setUp(self): shape = (4,7) - rand = N.random.random + rand = np.random.random - self.x = rand(shape) + rand(shape).astype(N.complex)*1j - self.dtype = N.complex + self.x = rand(shape) + rand(shape).astype(np.complex)*1j + self.dtype = np.complex def test_file(self): f = tempfile.TemporaryFile() self.x.tofile(f) f.seek(0) - y = N.fromfile(f,dtype=self.dtype) + y = np.fromfile(f,dtype=self.dtype) assert_array_equal(y,self.x.flat) def test_filename(self): @@ -511,7 +510,7 @@ class TestFromToFile(NumpyTestCase): f = open(filename,'wb') self.x.tofile(f) f.close() - y = N.fromfile(filename,dtype=self.dtype) + y = np.fromfile(filename,dtype=self.dtype) assert_array_equal(y,self.x.flat) class TestFromBuffer(ParametricTestCase): @@ -522,21 +521,21 @@ class TestFromBuffer(ParametricTestCase): tests = [] for byteorder in ['<','>']: for dtype in [float,int,N.complex]: - dt = N.dtype(dtype).newbyteorder(byteorder) - x = (N.random.random((4,7))*5).astype(dt) + dt = np.dtype(dtype).newbyteorder(byteorder) + x = (np.random.random((4,7))*5).astype(dt) buf = x.tostring() tests.append((self.tst_basic,buf,x.flat,{'dtype':dt})) return tests class TestResize(NumpyTestCase): def test_basic(self): - x = N.eye(3) + x = np.eye(3) x.resize((5,5)) assert_array_equal(x.flat[:9],N.eye(3).flat) assert_array_equal(x[9:].flat,0) def test_check_reference(self): - x = N.eye(3) + x = np.eye(3) y = x self.failUnlessRaises(ValueError,x.resize,(5,1)) diff --git a/numpy/core/tests/test_regression.py b/numpy/core/tests/test_regression.py index d3ee83d5d..0f3acd7f2 100644 --- a/numpy/core/tests/test_regression.py +++ b/numpy/core/tests/test_regression.py @@ -4,7 +4,7 @@ import pickle import sys set_local_path() -import numpy as N +import numpy as np restore_path() rlevel = 1 @@ -30,11 +30,11 @@ class TestRegression(NumpyTestCase): def check_mem_empty(self,level=rlevel): """Ticket #7""" - N.empty((1,),dtype=[('x',N.int64)]) + np.empty((1,),dtype=[('x',N.int64)]) def check_pickle_transposed(self,level=rlevel): """Ticket #16""" - a = N.transpose(N.array([[2,9],[7,0],[3,8]])) + a = np.transpose(N.array([[2,9],[7,0],[3,8]])) f = StringIO() pickle.dump(a,f) f.seek(0) @@ -44,45 +44,46 @@ class TestRegression(NumpyTestCase): def check_masked_array_create(self,level=rlevel): """Ticket #17""" - x = N.ma.masked_array([0,1,2,3,0,4,5,6],mask=[0,0,0,1,1,1,0,0]) + x = np.ma.masked_array([0,1,2,3,0,4,5,6],mask=[0,0,0,1,1,1,0,0]) +from data_store import load, save, create_module, create_shelf assert_array_equal(N.ma.nonzero(x),[[1,2,6,7]]) def check_poly1d(self,level=rlevel): """Ticket #28""" - assert_equal(N.poly1d([1]) - N.poly1d([1,0]), - N.poly1d([-1,1])) + assert_equal(np.poly1d([1]) - np.poly1d([1,0]), + np.poly1d([-1,1])) def check_typeNA(self,level=rlevel): """Ticket #31""" - assert_equal(N.typeNA[N.int64],'Int64') - assert_equal(N.typeNA[N.uint64],'UInt64') + assert_equal(np.typeNA[np.int64],'Int64') + assert_equal(np.typeNA[np.uint64],'UInt64') def check_dtype_names(self,level=rlevel): """Ticket #35""" - dt = N.dtype([(('name','label'),N.int32,3)]) + dt = np.dtype([(('name','label'),np.int32,3)]) def check_reduce(self,level=rlevel): """Ticket #40""" - assert_almost_equal(N.add.reduce([1.,.5],dtype=None), 1.5) + assert_almost_equal(np.add.reduce([1.,.5],dtype=None), 1.5) def check_zeros_order(self,level=rlevel): """Ticket #43""" - N.zeros([3], int, 'C') - N.zeros([3], order='C') - N.zeros([3], int, order='C') + np.zeros([3], int, 'C') + np.zeros([3], order='C') + np.zeros([3], int, order='C') def check_sort_bigendian(self,level=rlevel): """Ticket #47""" - a = N.linspace(0, 10, 11) + a = np.linspace(0, 10, 11) c = a.astype(N.dtype('<f8')) c.sort() assert_array_almost_equal(c, a) def check_negative_nd_indexing(self,level=rlevel): """Ticket #49""" - c = N.arange(125).reshape((5,5,5)) - origidx = N.array([-1, 0, 1]) - idx = N.array(origidx) + c = np.arange(125).reshape((5,5,5)) + origidx = np.array([-1, 0, 1]) + idx = np.array(origidx) c[idx] assert_array_equal(idx, origidx) @@ -90,15 +91,15 @@ class TestRegression(NumpyTestCase): """Ticket #50""" import tempfile f = StringIO() - ca = N.char.array(N.arange(1000,1010),itemsize=4) + ca = np.char.array(N.arange(1000,1010),itemsize=4) ca.dump(f) f.seek(0) - ca = N.load(f) + ca = np.load(f) f.close() def check_noncontiguous_fill(self,level=rlevel): """Ticket #58.""" - a = N.zeros((5,3)) + a = np.zeros((5,3)) b = a[:,:2,] def rs(): b.shape = (10,) @@ -106,17 +107,17 @@ class TestRegression(NumpyTestCase): def check_bool(self,level=rlevel): """Ticket #60""" - x = N.bool_(1) + x = np.bool_(1) def check_masked_array(self,level=rlevel): """Ticket #61""" - x = N.core.ma.array(1,mask=[1]) + x = np.core.ma.array(1,mask=[1]) def check_mem_masked_where(self,level=rlevel): """Ticket #62""" from numpy.core.ma import masked_where, MaskType - a = N.zeros((1,1)) - b = N.zeros(a.shape, MaskType) + a = np.zeros((1,1)) + b = np.zeros(a.shape, MaskType) c = masked_where(b,a) a-c @@ -124,33 +125,33 @@ class TestRegression(NumpyTestCase): """Ticket #64""" descr = [('x', [('y', [('z', 'c16', (2,)),]),]),] buffer = ((([6j,4j],),),) - h = N.array(buffer, dtype=descr) + h = np.array(buffer, dtype=descr) h['x']['y']['z'] def check_indexing2(self,level=rlevel): """Ticket #65""" descr = [('x', 'i4', (2,))] buffer = ([3,2],) - h = N.array(buffer, dtype=descr) + h = np.array(buffer, dtype=descr) h['x'] def check_round(self,level=rlevel): """Ticket #67""" - x = N.array([1+2j]) + x = np.array([1+2j]) assert_almost_equal(x**(-1), [1/(1+2j)]) def check_kron_matrix(self,level=rlevel): """Ticket #71""" - x = N.matrix('[1 0; 1 0]') + x = np.matrix('[1 0; 1 0]') assert_equal(type(N.kron(x,x)),type(x)) def check_scalar_compare(self,level=rlevel): """Ticket #72""" - a = N.array(['test', 'auto']) - assert_array_equal(a == 'auto', N.array([False,True])) + a = np.array(['test', 'auto']) + assert_array_equal(a == 'auto', np.array([False,True])) self.assert_(a[1] == 'auto') self.assert_(a[0] != 'auto') - b = N.linspace(0, 10, 11) + b = np.linspace(0, 10, 11) self.assert_(b != 'auto') self.assert_(b[0] != 'auto') @@ -158,26 +159,26 @@ class TestRegression(NumpyTestCase): """Ticket #79""" ulen = 1 ucs_value = u'\U0010FFFF' - ua = N.array([[[ucs_value*ulen]*2]*3]*4, dtype='U%s' % ulen) + ua = np.array([[[ucs_value*ulen]*2]*3]*4, dtype='U%s' % ulen) ua2 = ua.newbyteorder() def check_matrix_std_argmax(self,level=rlevel): """Ticket #83""" - x = N.asmatrix(N.random.uniform(0,1,(3,3))) + x = np.asmatrix(N.random.uniform(0,1,(3,3))) self.assertEqual(x.std().shape, ()) self.assertEqual(x.argmax().shape, ()) def check_object_array_fill(self,level=rlevel): """Ticket #86""" - x = N.zeros(1, 'O') + x = np.zeros(1, 'O') x.fill([]) def check_cov_parameters(self,level=rlevel): """Ticket #91""" - x = N.random.random((3,3)) + x = np.random.random((3,3)) y = x.copy() - N.cov(x,rowvar=1) - N.cov(y,rowvar=0) + np.cov(x,rowvar=1) + np.cov(y,rowvar=0) assert_array_equal(x,y) def check_mem_dtype_align(self,level=rlevel): @@ -188,13 +189,13 @@ class TestRegression(NumpyTestCase): def check_mem_digitize(self,level=rlevel): """Ticket #95""" for i in range(100): - N.digitize([1,2,3,4],[1,3]) - N.digitize([0,1,2,3,4],[1,3]) + np.digitize([1,2,3,4],[1,3]) + np.digitize([0,1,2,3,4],[1,3]) def check_intp(self,level=rlevel): """Ticket #99""" - i_width = N.int_(0).nbytes*2 - 1 - N.intp('0x' + 'f'*i_width,16) + i_width = np.int_(0).nbytes*2 - 1 + np.intp('0x' + 'f'*i_width,16) self.failUnlessRaises(OverflowError,N.intp,'0x' + 'f'*(i_width+1),16) self.failUnlessRaises(ValueError,N.intp,'0x1',32) assert_equal(255,N.intp('0xFF',16)) @@ -202,10 +203,10 @@ class TestRegression(NumpyTestCase): def check_endian_bool_indexing(self,level=rlevel): """Ticket #105""" - a = N.arange(10.,dtype='>f8') - b = N.arange(10.,dtype='<f8') - xa = N.where((a>2) & (a<6)) - xb = N.where((b>2) & (b<6)) + a = np.arange(10.,dtype='>f8') + b = np.arange(10.,dtype='<f8') + xa = np.where((a>2) & (a<6)) + xb = np.where((b>2) & (b<6)) ya = ((a>2) & (a<6)) yb = ((b>2) & (b<6)) assert_array_almost_equal(xa,ya.nonzero()) @@ -215,35 +216,35 @@ class TestRegression(NumpyTestCase): def check_mem_dot(self,level=rlevel): """Ticket #106""" - x = N.random.randn(0,1) - y = N.random.randn(10,1) - z = N.dot(x, N.transpose(y)) + x = np.random.randn(0,1) + y = np.random.randn(10,1) + z = np.dot(x, np.transpose(y)) def check_arange_endian(self,level=rlevel): """Ticket #111""" - ref = N.arange(10) - x = N.arange(10,dtype='<f8') + ref = np.arange(10) + x = np.arange(10,dtype='<f8') assert_array_equal(ref,x) - x = N.arange(10,dtype='>f8') + x = np.arange(10,dtype='>f8') assert_array_equal(ref,x) # Longfloat support is not consistent enough across # platforms for this test to be meaningful. # def check_longfloat_repr(self,level=rlevel): # """Ticket #112""" -# if N.longfloat(0).itemsize > 8: -# a = N.exp(N.array([1000],dtype=N.longfloat)) +# if np.longfloat(0).itemsize > 8: +# a = np.exp(N.array([1000],dtype=N.longfloat)) # assert(str(a)[1:9] == str(a[0])[:8]) def check_argmax(self,level=rlevel): """Ticket #119""" - a = N.random.normal(0,1,(4,5,6,7,8)) + a = np.random.normal(0,1,(4,5,6,7,8)) for i in xrange(a.ndim): aargmax = a.argmax(i) def check_matrix_properties(self,level=rlevel): """Ticket #125""" - a = N.matrix([1.0],dtype=float) + a = np.matrix([1.0],dtype=float) assert(type(a.real) is N.matrix) assert(type(a.imag) is N.matrix) c,d = N.matrix([0.0]).nonzero() diff --git a/numpy/doc/swig/test/testArray.py b/numpy/doc/swig/test/testArray.py index a22692465..9a1fc510b 100755 --- a/numpy/doc/swig/test/testArray.py +++ b/numpy/doc/swig/test/testArray.py @@ -7,10 +7,12 @@ import sys import unittest # Import NumPy -import numpy as N -major, minor = [ int(d) for d in N.__version__.split(".")[:2] ] -if major == 0: BadListError = TypeError -else: BadListError = ValueError +import numpy as np +major, minor = [ int(d) for d in np.__version__.split(".")[:2] ] +if major == 0: + BadListError = TypeError +else: + BadListError = ValueError # Add the distutils-generated build directory to the python search path and then # import the extension module @@ -38,7 +40,7 @@ class Array1TestCase(unittest.TestCase): def testConstructor2(self): "Test Array1 array constructor" - na = N.arange(self.length) + na = np.arange(self.length) aa = Array.Array1(na) self.failUnless(isinstance(aa, Array.Array1)) @@ -68,7 +70,7 @@ class Array1TestCase(unittest.TestCase): def testResize1(self): "Test Array1 resize method, array" - a = N.zeros((2*self.length,), dtype='l') + a = np.zeros((2*self.length,), dtype='l') self.array1.resize(a) self.failUnless(len(self.array1) == len(a)) @@ -114,7 +116,7 @@ class Array1TestCase(unittest.TestCase): "Test Array1 view method" for i in range(self.array1.length()): self.array1[i] = i+1 a = self.array1.view() - self.failUnless(isinstance(a, N.ndarray)) + self.failUnless(isinstance(a, np.ndarray)) self.failUnless(len(a) == self.length) self.failUnless((a == [1,2,3,4,5]).all()) @@ -139,7 +141,7 @@ class Array2TestCase(unittest.TestCase): def testConstructor2(self): "Test Array2 array constructor" - na = N.zeros((3,4), dtype="l") + na = np.zeros((3,4), dtype="l") aa = Array.Array2(na) self.failUnless(isinstance(aa, Array.Array2)) @@ -180,7 +182,7 @@ class Array2TestCase(unittest.TestCase): #def testResize1(self): # "Test Array2 resize method, array" - # a = N.zeros((2*self.nrows, 2*self.ncols), dtype='l') + # a = np.zeros((2*self.nrows, 2*self.ncols), dtype='l') # self.array2.resize(a) # self.failUnless(len(self.array2) == len(a)) @@ -197,7 +199,7 @@ class Array2TestCase(unittest.TestCase): m = self.nrows n = self.ncols array1 = [ ] - a = N.arange(n, dtype="l") + a = np.arange(n, dtype="l") for i in range(m): array1.append(Array.Array1(i*a)) for i in range(m): @@ -265,7 +267,7 @@ class Array2TestCase(unittest.TestCase): def testView(self): "Test Array2 view method" a = self.array2.view() - self.failUnless(isinstance(a, N.ndarray)) + self.failUnless(isinstance(a, np.ndarray)) self.failUnless(len(a) == self.nrows) ###################################################################### @@ -279,7 +281,7 @@ if __name__ == "__main__": # Execute the test suite print "Testing Classes of Module Array" - print "NumPy version", N.__version__ + print "NumPy version", np.__version__ print result = unittest.TextTestRunner(verbosity=2).run(suite) sys.exit(len(result.errors) + len(result.failures)) diff --git a/numpy/f2py/f90mod_rules.py b/numpy/f2py/f90mod_rules.py index fb1f76956..7821b6e0f 100644 --- a/numpy/f2py/f90mod_rules.py +++ b/numpy/f2py/f90mod_rules.py @@ -17,17 +17,15 @@ __version__ = "$Revision: 1.27 $"[10:-1] f2py_version='See `f2py -v`' -import pprint -import sys +import pprint.pprint as show +import sys.stderr.write as errmess +import sys.stdout.write as outmess import time import types import copy -errmess=sys.stderr.write -outmess=sys.stdout.write -show=pprint.pprint from auxfuncs import * -import numpy as N +import numpy as np import capi_maps import cfuncs import rules @@ -61,7 +59,7 @@ fgetdims1 = """\ deallocate(d) end if end if - if ((.not.allocated(d)).and.(s(1).ge.1)) then""" % N.intp().itemsize + if ((.not.allocated(d)).and.(s(1).ge.1)) then""" % np.intp().itemsize fgetdims2="""\ end if diff --git a/numpy/fft/tests/test_fftpack.py b/numpy/fft/tests/test_fftpack.py index 53d4a8c66..d1409bd69 100644 --- a/numpy/fft/tests/test_fftpack.py +++ b/numpy/fft/tests/test_fftpack.py @@ -1,24 +1,24 @@ import sys from numpy.testing import * set_package_path() -import numpy as N +import numpy as np restore_path() def fft1(x): L = len(x) - phase = -2j*N.pi*(N.arange(L)/float(L)) - phase = N.arange(L).reshape(-1,1) * phase - return N.sum(x*N.exp(phase),axis=1) + phase = -2j*np.pi*(np.arange(L)/float(L)) + phase = np.arange(L).reshape(-1,1) * phase + return np.sum(x*np.exp(phase),axis=1) class TestFFTShift(NumpyTestCase): def check_fft_n(self): - self.failUnlessRaises(ValueError,N.fft.fft,[1,2,3],0) + self.failUnlessRaises(ValueError,np.fft.fft,[1,2,3],0) class TestFFT1D(NumpyTestCase): def check_basic(self): - rand = N.random.random + rand = np.random.random x = rand(30) + 1j*rand(30) - assert_array_almost_equal(fft1(x), N.fft.fft(x)) + assert_array_almost_equal(fft1(x), np.fft.fft(x)) if __name__ == "__main__": NumpyTest().run() diff --git a/numpy/numarray/functions.py b/numpy/numarray/functions.py index 6e54456de..3f55e1a9c 100644 --- a/numpy/numarray/functions.py +++ b/numpy/numarray/functions.py @@ -36,8 +36,13 @@ __all__ += ['vdot', 'dot', 'matrixmultiply', 'ravel', 'indices', 'togglebyteorder' ] -import copy, copy_reg, types -import os, sys, math, operator +import copy, +import copy_reg +import types +import os +import sys +import math +import operator from numpy import dot as matrixmultiply, dot, vdot, ravel, concatenate, all,\ allclose, any, around, argsort, array_equal, array_equiv,\ @@ -45,7 +50,7 @@ from numpy import dot as matrixmultiply, dot, vdot, ravel, concatenate, all,\ diagonal, e, pi, indices, inner as innerproduct, nonzero, \ outer as outerproduct, kron as kroneckerproduct, lexsort, putmask, rank, \ resize, searchsorted, shape, size, sort, swapaxes, trace, transpose -import numpy as N +import numpy as np from numerictypes import typefrom @@ -62,46 +67,46 @@ def type2dtype(typecode, type, dtype, use_default=True): if dtype is None: if type is None: if use_default or typecode is not None: - dtype = N.dtype(typecode) + dtype = np.dtype(typecode) else: - dtype = N.dtype(type) + dtype = np.dtype(type) if use_default and dtype is None: - dtype = N.dtype('int') + dtype = np.dtype('int') return dtype def fromfunction(shape, dimensions, type=None, typecode=None, dtype=None): dtype = type2dtype(typecode, type, dtype, 1) - return N.fromfunction(shape, dimensions, dtype=dtype) + return np.fromfunction(shape, dimensions, dtype=dtype) def ones(shape, type=None, typecode=None, dtype=None): dtype = type2dtype(typecode, type, dtype, 1) - return N.ones(shape, dtype) + return np.ones(shape, dtype) def zeros(shape, type=None, typecode=None, dtype=None): dtype = type2dtype(typecode, type, dtype, 1) - return N.zeros(shape, dtype) + return np.zeros(shape, dtype) def where(condition, x=None, y=None, out=None): if x is None and y is None: - arr = N.where(condition) + arr = np.where(condition) else: - arr = N.where(condition, x, y) + arr = np.where(condition, x, y) if out is not None: out[...] = arr return out return arr def indices(shape, type=None): - return N.indices(shape, type) + return np.indices(shape, type) def arange(a1, a2=None, stride=1, type=None, shape=None, typecode=None, dtype=None): dtype = type2dtype(typecode, type, dtype, 0) - return N.arange(a1, a2, stride, dtype) + return np.arange(a1, a2, stride, dtype) arrayrange = arange def alltrue(x, axis=0): - return N.alltrue(x, axis) + return np.alltrue(x, axis) def and_(a, b): """Same as a & b @@ -113,7 +118,7 @@ def divide_remainder(a, b): return (a/b,a%b) def around(array, digits=0, output=None): - ret = N.around(array, digits, output) + ret = np.around(array, digits, output) if output is None: return ret return @@ -123,14 +128,14 @@ def array2list(arr): def choose(selector, population, outarr=None, clipmode=RAISE): - a = N.asarray(selector) + a = np.asarray(selector) ret = a.choose(population, out=outarr, mode=clipmode) if outarr is None: return ret return def compress(condition, a, axis=0): - return N.compress(condition, a, axis) + return np.compress(condition, a, axis) # only returns a view def explicit_type(a): @@ -180,7 +185,7 @@ def fromfile(infile, type=None, shape=None, sizing=STRICT, if -1 not in shape: if sizing != STRICT: raise ValueError("sizing must be STRICT if size complete") - arr = N.empty(shape, dtype) + arr = np.empty(shape, dtype) bytesleft=arr.nbytes bytesread=0 while(bytesleft > _BLOCKSIZE): @@ -208,7 +213,7 @@ def fromfile(infile, type=None, shape=None, sizing=STRICT, ##file whose size may be determined before allocation, should be ##quick -- only one allocation will be needed. - recsize = dtype.itemsize * N.product([i for i in shape if i != -1]) + recsize = dtype.itemsize * np.product([i for i in shape if i != -1]) blocksize = max(_BLOCKSIZE/recsize, 1)*recsize ##try to estimate file size @@ -222,7 +227,7 @@ def fromfile(infile, type=None, shape=None, sizing=STRICT, else: initsize=max(1,(endpos-curpos)/recsize)*recsize - buf = N.newbuffer(initsize) + buf = np.newbuffer(initsize) bytesread=0 while 1: @@ -260,9 +265,9 @@ def fromfile(infile, type=None, shape=None, sizing=STRICT, uidx = shape.index(-1) shape[uidx]=len(buf) / recsize - a = N.ndarray(shape=shape, dtype=type, buffer=buf) + a = np.ndarray(shape=shape, dtype=type, buffer=buf) if a.dtype.char == '?': - N.not_equal(a, 0, a) + np.not_equal(a, 0, a) return a def fromstring(datastring, type=None, shape=None, typecode=None, dtype=None): @@ -270,8 +275,8 @@ def fromstring(datastring, type=None, shape=None, typecode=None, dtype=None): if shape is None: count = -1 else: - count = N.product(shape) - res = N.fromstring(datastring, dtype=dtype, count=count) + count = np.product(shape) + res = np.fromstring(datastring, dtype=dtype, count=count) if shape is not None: res.shape = shape return res @@ -280,7 +285,7 @@ def fromstring(datastring, type=None, shape=None, typecode=None, dtype=None): # check_overflow is ignored def fromlist(seq, type=None, shape=None, check_overflow=0, typecode=None, dtype=None): dtype = type2dtype(typecode, type, dtype, False) - return N.array(seq, dtype) + return np.array(seq, dtype) def array(sequence=None, typecode=None, copy=1, savespace=0, type=None, shape=None, dtype=None): @@ -290,21 +295,21 @@ def array(sequence=None, typecode=None, copy=1, savespace=0, return None if dtype is None: dtype = 'l' - return N.empty(shape, dtype) + return np.empty(shape, dtype) if isinstance(sequence, file): return fromfile(sequence, dtype=dtype, shape=shape) if isinstance(sequence, str): return fromstring(sequence, dtype=dtype, shape=shape) if isinstance(sequence, buffer): - arr = N.frombuffer(sequence, dtype=dtype) + arr = np.frombuffer(sequence, dtype=dtype) else: - arr = N.array(sequence, dtype, copy=copy) + arr = np.array(sequence, dtype, copy=copy) if shape is not None: arr.shape = shape return arr def asarray(seq, type=None, typecode=None, dtype=None): - if isinstance(seq, N.ndarray) and type is None and \ + if isinstance(seq, np.ndarray) and type is None and \ typecode is None and dtype is None: return seq return array(seq, type=type, typecode=typecode, copy=0, dtype=dtype) @@ -328,10 +333,10 @@ def getShape(shape, *args): shape = (shape, ) + args else: shape = tuple(shape) - dummy = N.array(shape) - if not issubclass(dummy.dtype.type, N.integer): + dummy = np.array(shape) + if not issubclass(dummy.dtype.type, np.integer): raise TypeError - if len(dummy) > N.MAXDIMS: + if len(dummy) > np.MAXDIMS: raise TypeError except: raise TypeError("Shape must be a sequence of integers") @@ -340,7 +345,7 @@ def getShape(shape, *args): def identity(n, type=None, typecode=None, dtype=None): dtype = type2dtype(typecode, type, dtype, True) - return N.identity(n, dtype) + return np.identity(n, dtype) def info(obj, output=sys.stdout, numpy=0): if numpy: @@ -396,7 +401,7 @@ def info(obj, output=sys.stdout, numpy=0): #clipmode is ignored if axis is not 0 and array is not 1d def put(array, indices, values, axis=0, clipmode=RAISE): - if not isinstance(array, N.ndarray): + if not isinstance(array, np.ndarray): raise TypeError("put only works on subclass of ndarray") work = asarray(array) if axis == 0: @@ -404,7 +409,7 @@ def put(array, indices, values, axis=0, clipmode=RAISE): work.put(indices, values, clipmode) else: work[indices] = values - elif isinstance(axis, (int, long, N.integer)): + elif isinstance(axis, (int, long, np.integer)): work = work.swapaxes(0, axis) work[indices] = values work = work.swapaxes(0, axis) @@ -418,13 +423,13 @@ def put(array, indices, values, axis=0, clipmode=RAISE): work = work.transpose(axis) def repeat(array, repeats, axis=0): - return N.repeat(array, repeats, axis) + return np.repeat(array, repeats, axis) def reshape(array, shape, *args): if len(args) > 0: shape = (shape,) + args - return N.reshape(array, shape) + return np.reshape(array, shape) import warnings as _warnings @@ -434,12 +439,12 @@ def round(*args, **keys): return around(*args, **keys) def sometrue(array, axis=0): - return N.sometrue(array, axis) + return np.sometrue(array, axis) #clipmode is ignored if axis is not an integer def take(array, indices, axis=0, outarr=None, clipmode=RAISE): - array = N.asarray(array) - if isinstance(axis, (int, long, N.integer)): + array = np.asarray(array) + if isinstance(axis, (int, long, np.integer)): res = array.take(indices, axis, outarr, clipmode) if outarr is None: return res @@ -457,34 +462,34 @@ def take(array, indices, axis=0, outarr=None, clipmode=RAISE): return def tensormultiply(a1, a2): - a1, a2 = N.asarray(a1), N.asarray(a2) + a1, a2 = np.asarray(a1), np.asarray(a2) if (a1.shape[-1] != a2.shape[0]): raise ValueError("Unmatched dimensions") shape = a1.shape[:-1] + a2.shape[1:] - return N.reshape(dot(N.reshape(a1, (-1, a1.shape[-1])), - N.reshape(a2, (a2.shape[0],-1))), + return np.reshape(dot(N.reshape(a1, (-1, a1.shape[-1])), + np.reshape(a2, (a2.shape[0],-1))), shape) def cumsum(a1, axis=0, out=None, type=None, dim=0): - return N.asarray(a1).cumsum(axis,dtype=type,out=out) + return np.asarray(a1).cumsum(axis,dtype=type,out=out) def cumproduct(a1, axis=0, out=None, type=None, dim=0): - return N.asarray(a1).cumprod(axis,dtype=type,out=out) + return np.asarray(a1).cumprod(axis,dtype=type,out=out) def argmax(x, axis=-1): - return N.argmax(x, axis) + return np.argmax(x, axis) def argmin(x, axis=-1): - return N.argmin(x, axis) + return np.argmin(x, axis) def newobj(self, type): if type is None: - return N.empty_like(self) + return np.empty_like(self) else: - return N.empty(self.shape, type) + return np.empty(self.shape, type) def togglebyteorder(self): self.dtype=self.dtype.newbyteorder() def average(a, axis=0, weights=None, returned=0): - return N.average(a, axis, weights, returned) + return = np.average(a, axis, weights, returned) |