summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--doc/source/reference/arrays.classes.rst2
-rw-r--r--doc/source/reference/random/generator.rst84
-rw-r--r--doc/source/user/c-info.how-to-extend.rst8
-rw-r--r--doc/source/user/c-info.python-as-glue.rst8
-rw-r--r--doc/source/user/quickstart.rst6
5 files changed, 54 insertions, 54 deletions
diff --git a/doc/source/reference/arrays.classes.rst b/doc/source/reference/arrays.classes.rst
index 3b13530c7..83b419306 100644
--- a/doc/source/reference/arrays.classes.rst
+++ b/doc/source/reference/arrays.classes.rst
@@ -75,7 +75,7 @@ NumPy provides several hooks that classes can customize:
:func:`~numpy.matmul`, which currently is not a Ufunc, but could be
relatively easily be rewritten as a (set of) generalized Ufuncs. The
same may happen with functions such as :func:`~numpy.median`,
- :func:`~numpy.min`, and :func:`~numpy.argsort`.
+ :func:`~numpy.amin`, and :func:`~numpy.argsort`.
Like with some other special methods in python, such as ``__hash__`` and
``__iter__``, it is possible to indicate that your class does *not*
diff --git a/doc/source/reference/random/generator.rst b/doc/source/reference/random/generator.rst
index c3803bcab..068143270 100644
--- a/doc/source/reference/random/generator.rst
+++ b/doc/source/reference/random/generator.rst
@@ -22,63 +22,63 @@ Accessing the BitGenerator
.. autosummary::
:toctree: generated/
- ~Generator.bit_generator
+ ~numpy.random.Generator.bit_generator
Simple random data
==================
.. autosummary::
:toctree: generated/
- ~Generator.integers
- ~Generator.random
- ~Generator.choice
- ~Generator.bytes
+ ~numpy.random.Generator.integers
+ ~numpy.random.Generator.random
+ ~numpy.random.Generator.choice
+ ~numpy.random.Generator.bytes
Permutations
============
.. autosummary::
:toctree: generated/
- ~Generator.shuffle
- ~Generator.permutation
+ ~numpy.random.Generator.shuffle
+ ~numpy.random.Generator.permutation
Distributions
=============
.. autosummary::
:toctree: generated/
- ~Generator.beta
- ~Generator.binomial
- ~Generator.chisquare
- ~Generator.dirichlet
- ~Generator.exponential
- ~Generator.f
- ~Generator.gamma
- ~Generator.geometric
- ~Generator.gumbel
- ~Generator.hypergeometric
- ~Generator.laplace
- ~Generator.logistic
- ~Generator.lognormal
- ~Generator.logseries
- ~Generator.multinomial
- ~Generator.multivariate_normal
- ~Generator.negative_binomial
- ~Generator.noncentral_chisquare
- ~Generator.noncentral_f
- ~Generator.normal
- ~Generator.pareto
- ~Generator.poisson
- ~Generator.power
- ~Generator.rayleigh
- ~Generator.standard_cauchy
- ~Generator.standard_exponential
- ~Generator.standard_gamma
- ~Generator.standard_normal
- ~Generator.standard_t
- ~Generator.triangular
- ~Generator.uniform
- ~Generator.vonmises
- ~Generator.wald
- ~Generator.weibull
- ~Generator.zipf
+ ~numpy.random.Generator.beta
+ ~numpy.random.Generator.binomial
+ ~numpy.random.Generator.chisquare
+ ~numpy.random.Generator.dirichlet
+ ~numpy.random.Generator.exponential
+ ~numpy.random.Generator.f
+ ~numpy.random.Generator.gamma
+ ~numpy.random.Generator.geometric
+ ~numpy.random.Generator.gumbel
+ ~numpy.random.Generator.hypergeometric
+ ~numpy.random.Generator.laplace
+ ~numpy.random.Generator.logistic
+ ~numpy.random.Generator.lognormal
+ ~numpy.random.Generator.logseries
+ ~numpy.random.Generator.multinomial
+ ~numpy.random.Generator.multivariate_normal
+ ~numpy.random.Generator.negative_binomial
+ ~numpy.random.Generator.noncentral_chisquare
+ ~numpy.random.Generator.noncentral_f
+ ~numpy.random.Generator.normal
+ ~numpy.random.Generator.pareto
+ ~numpy.random.Generator.poisson
+ ~numpy.random.Generator.power
+ ~numpy.random.Generator.rayleigh
+ ~numpy.random.Generator.standard_cauchy
+ ~numpy.random.Generator.standard_exponential
+ ~numpy.random.Generator.standard_gamma
+ ~numpy.random.Generator.standard_normal
+ ~numpy.random.Generator.standard_t
+ ~numpy.random.Generator.triangular
+ ~numpy.random.Generator.uniform
+ ~numpy.random.Generator.vonmises
+ ~numpy.random.Generator.wald
+ ~numpy.random.Generator.weibull
+ ~numpy.random.Generator.zipf
diff --git a/doc/source/user/c-info.how-to-extend.rst b/doc/source/user/c-info.how-to-extend.rst
index 3961325fb..00ef8ab74 100644
--- a/doc/source/user/c-info.how-to-extend.rst
+++ b/doc/source/user/c-info.how-to-extend.rst
@@ -342,7 +342,7 @@ The method is to
4. If you are writing the algorithm, then I recommend that you use the
stride information contained in the array to access the elements of
- the array (the :c:func:`PyArray_GETPTR` macros make this painless). Then,
+ the array (the :c:func:`PyArray_GetPtr` macros make this painless). Then,
you can relax your requirements so as not to force a single-segment
array and the data-copying that might result.
@@ -463,7 +463,7 @@ writeable). The syntax is
This flag is useful to specify an array that will be used for both
input and output. :c:func:`PyArray_ResolveWritebackIfCopy`
- must be called before :func:`Py_DECREF` at
+ must be called before :c:func:`Py_DECREF` at
the end of the interface routine to write back the temporary data
into the original array passed in. Use
of the :c:data:`NPY_ARRAY_WRITEBACKIFCOPY` or
@@ -530,7 +530,7 @@ specific element of the array is determined only by the array of
npy_intp variables, :c:func:`PyArray_STRIDES` (obj). In particular, this
c-array of integers shows how many **bytes** must be added to the
current element pointer to get to the next element in each dimension.
-For arrays less than 4-dimensions there are :c:func:`PyArray_GETPTR{k}`
+For arrays less than 4-dimensions there are ``PyArray_GETPTR{k}``
(obj, ...) macros where {k} is the integer 1, 2, 3, or 4 that make
using the array strides easier. The arguments .... represent {k} non-
negative integer indices into the array. For example, suppose ``E`` is
@@ -543,7 +543,7 @@ contiguous arrays have particular striding patterns. Two array flags
whether or not the striding pattern of a particular array matches the
C-style contiguous or Fortran-style contiguous or neither. Whether or
not the striding pattern matches a standard C or Fortran one can be
-tested Using :c:func:`PyArray_ISCONTIGUOUS` (obj) and
+tested Using :c:func:`PyArray_IS_C_CONTIGUOUS` (obj) and
:c:func:`PyArray_ISFORTRAN` (obj) respectively. Most third-party
libraries expect contiguous arrays. But, often it is not difficult to
support general-purpose striding. I encourage you to use the striding
diff --git a/doc/source/user/c-info.python-as-glue.rst b/doc/source/user/c-info.python-as-glue.rst
index 01d2a64d1..8b1bc9a98 100644
--- a/doc/source/user/c-info.python-as-glue.rst
+++ b/doc/source/user/c-info.python-as-glue.rst
@@ -744,14 +744,14 @@ around this restriction that allow ctypes to integrate with other
objects.
1. Don't set the argtypes attribute of the function object and define an
- :obj:`_as_parameter_` method for the object you want to pass in. The
- :obj:`_as_parameter_` method must return a Python int which will be passed
+ ``_as_parameter_`` method for the object you want to pass in. The
+ ``_as_parameter_`` method must return a Python int which will be passed
directly to the function.
2. Set the argtypes attribute to a list whose entries contain objects
with a classmethod named from_param that knows how to convert your
object to an object that ctypes can understand (an int/long, string,
- unicode, or object with the :obj:`_as_parameter_` attribute).
+ unicode, or object with the ``_as_parameter_`` attribute).
NumPy uses both methods with a preference for the second method
because it can be safer. The ctypes attribute of the ndarray returns
@@ -764,7 +764,7 @@ correct type, shape, and has the correct flags set or risk nasty
crashes if the data-pointer to inappropriate arrays are passed in.
To implement the second method, NumPy provides the class-factory
-function :func:`ndpointer` in the :mod:`ctypeslib` module. This
+function :func:`ndpointer` in the :mod:`numpy.ctypeslib` module. This
class-factory function produces an appropriate class that can be
placed in an argtypes attribute entry of a ctypes function. The class
will contain a from_param method which ctypes will use to convert any
diff --git a/doc/source/user/quickstart.rst b/doc/source/user/quickstart.rst
index c8d964599..772625372 100644
--- a/doc/source/user/quickstart.rst
+++ b/doc/source/user/quickstart.rst
@@ -206,8 +206,8 @@ of elements that we want, instead of the step::
`empty_like`,
`arange`,
`linspace`,
- `numpy.random.rand`,
- `numpy.random.randn`,
+ `numpy.random.mtrand.RandomState.rand`,
+ `numpy.random.mtrand.RandomState.randn`,
`fromfunction`,
`fromfile`
@@ -732,7 +732,7 @@ stacks 1D arrays as columns into a 2D array. It is equivalent to
array([[ 4., 3.],
[ 2., 8.]])
-On the other hand, the function `row_stack` is equivalent to `vstack`
+On the other hand, the function `ma.row_stack` is equivalent to `vstack`
for any input arrays.
In general, for arrays of with more than two dimensions,
`hstack` stacks along their second