diff options
-rw-r--r-- | numpy/core/code_generators/docstrings.py | 12 |
1 files changed, 8 insertions, 4 deletions
diff --git a/numpy/core/code_generators/docstrings.py b/numpy/core/code_generators/docstrings.py index 7271a509d..ae5643e20 100644 --- a/numpy/core/code_generators/docstrings.py +++ b/numpy/core/code_generators/docstrings.py @@ -476,7 +476,8 @@ add_newdoc('numpy.core.umath', 'bitwise_and', each element is first converted to its binary representation (which works just like the decimal system, only now we're using 2 instead of 10): - .. math:: x = \\sum_{i=0}^{W-1} a_i \\cdot 2^i\\\\\n y = \\sum_{i=0}^{W-1} b_i \\cdot 2^i, + .. math:: x = \\sum_{i=0}^{W-1} a_i \\cdot 2^i\\\\ + y = \\sum_{i=0}^{W-1} b_i \\cdot 2^i, where ``W`` is the bit-width of the type (i.e., 8 for a byte or uint8), and each :math:`a_i` and :math:`b_j` is either 0 or 1. For example, 13 @@ -540,7 +541,8 @@ add_newdoc('numpy.core.umath', 'bitwise_or', each element is first converted to its binary representation (which works just like the decimal system, only now we're using 2 instead of 10): - .. math:: x = \\sum_{i=0}^{W-1} a_i \\cdot 2^i\\\\\n y = \\sum_{i=0}^{W-1} b_i \\cdot 2^i, + .. math:: x = \\sum_{i=0}^{W-1} a_i \\cdot 2^i\\\\ + y = \\sum_{i=0}^{W-1} b_i \\cdot 2^i, where ``W`` is the bit-width of the type (i.e., 8 for a byte or uint8), and each :math:`a_i` and :math:`b_j` is either 0 or 1. For example, 13 @@ -591,7 +593,8 @@ add_newdoc('numpy.core.umath', 'bitwise_or', >>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4])) array([ 6, 5, 255]) - >>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32), \\\n... np.array([4, 4, 4, 2147483647L], dtype=np.int32)) + >>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32), + ... np.array([4, 4, 4, 2147483647L], dtype=np.int32)) array([ 6, 5, 255, 2147483647]) >>> np.bitwise_or([True, True], [False, True]) array([ True, True], dtype=bool) @@ -606,7 +609,8 @@ add_newdoc('numpy.core.umath', 'bitwise_xor', each element is first converted to its binary representation (which works just like the decimal system, only now we're using 2 instead of 10): - .. math:: x = \\sum_{i=0}^{W-1} a_i \\cdot 2^i\\\\\n y = \\sum_{i=0}^{W-1} b_i \\cdot 2^i, + .. math:: x = \\sum_{i=0}^{W-1} a_i \\cdot 2^i\\\\ + y = \\sum_{i=0}^{W-1} b_i \\cdot 2^i, where ``W`` is the bit-width of the type (i.e., 8 for a byte or uint8), and each :math:`a_i` and :math:`b_j` is either 0 or 1. For example, 13 |