summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--numpy/core/code_generators/ufunc_docstrings.py32
-rw-r--r--numpy/core/defchararray.py12
-rw-r--r--numpy/core/fromnumeric.py2
-rw-r--r--numpy/core/numeric.py11
-rw-r--r--numpy/lib/arraypad.py10
-rw-r--r--numpy/lib/financial.py2
-rw-r--r--numpy/lib/function_base.py16
-rw-r--r--numpy/lib/polynomial.py4
-rw-r--r--numpy/ma/core.py2
-rw-r--r--numpy/random/mtrand/mtrand.pyx10
10 files changed, 51 insertions, 50 deletions
diff --git a/numpy/core/code_generators/ufunc_docstrings.py b/numpy/core/code_generators/ufunc_docstrings.py
index 1abbb666b..328e43ca6 100644
--- a/numpy/core/code_generators/ufunc_docstrings.py
+++ b/numpy/core/code_generators/ufunc_docstrings.py
@@ -686,7 +686,7 @@ add_newdoc('numpy.core.umath', 'ceil',
Returns
-------
- y : {ndarray, scalar}
+ y : ndarray or scalar
The ceiling of each element in `x`, with `float` dtype.
See Also
@@ -716,7 +716,7 @@ add_newdoc('numpy.core.umath', 'trunc',
Returns
-------
- y : {ndarray, scalar}
+ y : ndarray or scalar
The truncated value of each element in `x`.
See Also
@@ -931,7 +931,7 @@ add_newdoc('numpy.core.umath', 'divide',
Returns
-------
- y : {ndarray, scalar}
+ y : ndarray or scalar
The quotient ``x1/x2``, element-wise. Returns a scalar if
both ``x1`` and ``x2`` are scalars.
@@ -999,7 +999,7 @@ add_newdoc('numpy.core.umath', 'equal',
Returns
-------
- out : {ndarray, bool}
+ out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
@@ -1172,7 +1172,7 @@ add_newdoc('numpy.core.umath', 'fabs',
Returns
-------
- y : {ndarray, scalar}
+ y : ndarray or scalar
The absolute values of `x`, the returned values are always floats.
See Also
@@ -1202,7 +1202,7 @@ add_newdoc('numpy.core.umath', 'floor',
Returns
-------
- y : {ndarray, scalar}
+ y : ndarray or scalar
The floor of each element in `x`.
See Also
@@ -1632,7 +1632,7 @@ add_newdoc('numpy.core.umath', 'isnan',
Returns
-------
- y : {ndarray, bool}
+ y : ndarray or bool
For scalar input, the result is a new boolean with value True if
the input is NaN; otherwise the value is False.
@@ -2046,7 +2046,7 @@ add_newdoc('numpy.core.umath', 'logical_and',
Returns
-------
- y : {ndarray, bool}
+ y : ndarray or bool
Boolean result with the same shape as `x1` and `x2` of the logical
AND operation on corresponding elements of `x1` and `x2`.
@@ -2112,7 +2112,7 @@ add_newdoc('numpy.core.umath', 'logical_or',
Returns
-------
- y : {ndarray, bool}
+ y : ndarray or bool
Boolean result with the same shape as `x1` and `x2` of the logical
OR operation on elements of `x1` and `x2`.
@@ -2193,7 +2193,7 @@ add_newdoc('numpy.core.umath', 'maximum',
Returns
-------
- y : {ndarray, scalar}
+ y : ndarray or scalar
The maximum of `x1` and `x2`, element-wise. Returns scalar if
both `x1` and `x2` are scalars.
@@ -2251,7 +2251,7 @@ add_newdoc('numpy.core.umath', 'minimum',
Returns
-------
- y : {ndarray, scalar}
+ y : ndarray or scalar
The minimum of `x1` and `x2`, element-wise. Returns scalar if
both `x1` and `x2` are scalars.
@@ -2309,7 +2309,7 @@ add_newdoc('numpy.core.umath', 'fmax',
Returns
-------
- y : {ndarray, scalar}
+ y : ndarray or scalar
The minimum of `x1` and `x2`, element-wise. Returns scalar if
both `x1` and `x2` are scalars.
@@ -2366,7 +2366,7 @@ add_newdoc('numpy.core.umath', 'fmin',
Returns
-------
- y : {ndarray, scalar}
+ y : ndarray or scalar
The minimum of `x1` and `x2`, element-wise. Returns scalar if
both `x1` and `x2` are scalars.
@@ -2780,7 +2780,7 @@ add_newdoc('numpy.core.umath', 'rint',
Returns
-------
- out : {ndarray, scalar}
+ out : ndarray or scalar
Output array is same shape and type as `x`.
See Also
@@ -3365,9 +3365,9 @@ add_newdoc('numpy.core.umath', 'frexp',
----------
x : array_like
Array of numbers to be decomposed.
- out1: ndarray, optional
+ out1 : ndarray, optional
Output array for the mantissa. Must have the same shape as `x`.
- out2: ndarray, optional
+ out2 : ndarray, optional
Output array for the exponent. Must have the same shape as `x`.
Returns
diff --git a/numpy/core/defchararray.py b/numpy/core/defchararray.py
index 121e32314..cc6cb5a38 100644
--- a/numpy/core/defchararray.py
+++ b/numpy/core/defchararray.py
@@ -109,7 +109,7 @@ def equal(x1, x2):
Returns
-------
- out : {ndarray, bool}
+ out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
@@ -133,7 +133,7 @@ def not_equal(x1, x2):
Returns
-------
- out : {ndarray, bool}
+ out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
@@ -158,7 +158,7 @@ def greater_equal(x1, x2):
Returns
-------
- out : {ndarray, bool}
+ out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
@@ -182,7 +182,7 @@ def less_equal(x1, x2):
Returns
-------
- out : {ndarray, bool}
+ out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
@@ -206,7 +206,7 @@ def greater(x1, x2):
Returns
-------
- out : {ndarray, bool}
+ out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
@@ -230,7 +230,7 @@ def less(x1, x2):
Returns
-------
- out : {ndarray, bool}
+ out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index bab7cdf4b..321deb014 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -357,7 +357,7 @@ def repeat(a, repeats, axis=None):
----------
a : array_like
Input array.
- repeats : {int, array of ints}
+ repeats : int or array of ints
The number of repetitions for each element. `repeats` is broadcasted
to fit the shape of the given axis.
axis : int, optional
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py
index 30cba28f2..1847300dd 100644
--- a/numpy/core/numeric.py
+++ b/numpy/core/numeric.py
@@ -1150,7 +1150,8 @@ def tensordot(a, b, axes=2):
----------
a, b : array_like, len(shape) >= 1
Tensors to "dot".
- axes : {integer_like, array_like}
+
+ axes : int or (2,) array_like
* integer_like
If an int N, sum over the last N axes of `a` and the first N axes
of `b` in order. The sizes of the corresponding axes must match.
@@ -1168,11 +1169,11 @@ def tensordot(a, b, axes=2):
``axes = 0`` : tensor product $a\otimes b$
``axes = 1`` : tensor dot product $a\cdot b$
``axes = 2`` : (default) tensor double contraction $a:b$
-
- When `axes` is integer_like, the sequence for evaluation will be: first
- the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and
+
+ When `axes` is integer_like, the sequence for evaluation will be: first
+ the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and
Nth axis in `b` last.
-
+
When there is more than one axis to sum over - and they are not the last
(first) axes of `a` (`b`) - the argument `axes` should consist of
two sequences of the same length, with the first axis to sum over given
diff --git a/numpy/lib/arraypad.py b/numpy/lib/arraypad.py
index bbfdce794..a48199a82 100644
--- a/numpy/lib/arraypad.py
+++ b/numpy/lib/arraypad.py
@@ -1105,7 +1105,7 @@ def pad(array, pad_width, mode=None, **kwargs):
((before, after),) yields same before and after pad for each axis.
(pad,) or int is a shortcut for before = after = pad width for all
axes.
- mode : {str, function}
+ mode : str or function
One of the following string values or a user supplied function.
'constant'
@@ -1140,7 +1140,7 @@ def pad(array, pad_width, mode=None, **kwargs):
end values are used to pad the beginning.
<function>
Padding function, see Notes.
- stat_length : {sequence, int}, optional
+ stat_length : sequence or int, optional
Used in 'maximum', 'mean', 'median', and 'minimum'. Number of
values at edge of each axis used to calculate the statistic value.
@@ -1154,7 +1154,7 @@ def pad(array, pad_width, mode=None, **kwargs):
length for all axes.
Default is ``None``, to use the entire axis.
- constant_values : {sequence, int}, optional
+ constant_values : sequence or int, optional
Used in 'constant'. The values to set the padded values for each
axis.
@@ -1168,7 +1168,7 @@ def pad(array, pad_width, mode=None, **kwargs):
all axes.
Default is 0.
- end_values : {sequence, int}, optional
+ end_values : sequence or int, optional
Used in 'linear_ramp'. The values used for the ending value of the
linear_ramp and that will form the edge of the padded array.
@@ -1182,7 +1182,7 @@ def pad(array, pad_width, mode=None, **kwargs):
all axes.
Default is 0.
- reflect_type : str {'even', 'odd'}, optional
+ reflect_type : {'even', 'odd'}, optional
Used in 'reflect', and 'symmetric'. The 'even' style is the
default with an unaltered reflection around the edge value. For
the 'odd' style, the extented part of the array is created by
diff --git a/numpy/lib/financial.py b/numpy/lib/financial.py
index 5b96e5b8e..baff8b0b6 100644
--- a/numpy/lib/financial.py
+++ b/numpy/lib/financial.py
@@ -148,7 +148,7 @@ def pmt(rate, nper, pv, fv=0, when='end'):
Number of compounding periods
pv : array_like
Present value
- fv : array_like (optional)
+ fv : array_like, optional
Future value (default = 0)
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 36ce94bad..135053e43 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -263,7 +263,7 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None):
normed : bool, optional
If False, returns the number of samples in each bin. If True,
returns the bin density ``bin_count / sample_count / bin_volume``.
- weights : array_like (N,), optional
+ weights : (N,) array_like, optional
An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`.
Weights are normalized to 1 if normed is True. If normed is False,
the values of the returned histogram are equal to the sum of the
@@ -461,7 +461,7 @@ def average(a, axis=None, weights=None, returned=False):
Returns
-------
- average, [sum_of_weights] : {array_type, double}
+ average, [sum_of_weights] : array_type or double
Return the average along the specified axis. When returned is `True`,
return a tuple with the average as the first element and the sum
of the weights as the second element. The return type is `Float`
@@ -885,9 +885,9 @@ def copy(a, order='K'):
def gradient(f, *varargs, **kwargs):
"""
Return the gradient of an N-dimensional array.
-
+
The gradient is computed using second order accurate central differences
- in the interior and either first differences or second order accurate
+ in the interior and either first differences or second order accurate
one-sides (forward or backwards) differences at the boundaries. The
returned gradient hence has the same shape as the input array.
@@ -901,7 +901,7 @@ def gradient(f, *varargs, **kwargs):
edge_order : {1, 2}, optional
Gradient is calculated using N\ :sup:`th` order accurate differences
at the boundaries. Default: 1.
-
+
.. versionadded:: 1.9.1
Returns
@@ -1147,7 +1147,7 @@ def interp(x, xp, fp, left=None, right=None, period=None):
Returns
-------
- y : {float, ndarray}
+ y : float or ndarray
The interpolated values, same shape as `x`.
Raises
@@ -1250,7 +1250,7 @@ def angle(z, deg=0):
Returns
-------
- angle : {ndarray, scalar}
+ angle : ndarray or scalar
The counterclockwise angle from the positive real axis on
the complex plane, with dtype as numpy.float64.
@@ -1980,7 +1980,7 @@ def corrcoef(x, y=None, rowvar=1, bias=0, ddof=None):
observations (unbiased estimate). If `bias` is 1, then
normalization is by ``N``. These values can be overridden by using
the keyword ``ddof`` in numpy versions >= 1.5.
- ddof : {None, int}, optional
+ ddof : int, optional
.. versionadded:: 1.5
If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is
the number of observations; this overrides the value implied by
diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py
index 2b867e244..de9376300 100644
--- a/numpy/lib/polynomial.py
+++ b/numpy/lib/polynomial.py
@@ -253,12 +253,12 @@ def polyint(p, m=1, k=None):
Parameters
----------
- p : {array_like, poly1d}
+ p : array_like or poly1d
Polynomial to differentiate.
A sequence is interpreted as polynomial coefficients, see `poly1d`.
m : int, optional
Order of the antiderivative. (Default: 1)
- k : {None, list of `m` scalars, scalar}, optional
+ k : list of `m` scalars or scalar, optional
Integration constants. They are given in the order of integration:
those corresponding to highest-order terms come first.
diff --git a/numpy/ma/core.py b/numpy/ma/core.py
index 34e52d86e..9ca9136dd 100644
--- a/numpy/ma/core.py
+++ b/numpy/ma/core.py
@@ -4978,7 +4978,7 @@ class MaskedArray(ndarray):
Returns
-------
- {ndarray, scalar}
+ ndarray or scalar
If multi-dimension input, returns a new ndarray of indices to the
minimum values along the given axis. Otherwise, returns a scalar
of index to the minimum values along the given axis.
diff --git a/numpy/random/mtrand/mtrand.pyx b/numpy/random/mtrand/mtrand.pyx
index c03666527..3f6af86b1 100644
--- a/numpy/random/mtrand/mtrand.pyx
+++ b/numpy/random/mtrand/mtrand.pyx
@@ -1923,7 +1923,7 @@ cdef class RandomState:
Returns
-------
- samples : {ndarray, scalar}
+ samples : ndarray or scalar
Samples from the Fisher distribution.
See Also
@@ -2756,7 +2756,7 @@ cdef class RandomState:
Returns
-------
- samples : {ndarray, scalar}
+ samples : ndarray or scalar
The returned samples lie in [0, 1].
Raises
@@ -3099,7 +3099,7 @@ cdef class RandomState:
Returns
-------
- samples : {ndarray, scalar}
+ samples : ndarray or scalar
where the values are all integers in [0, n].
See Also
@@ -3567,7 +3567,7 @@ cdef class RandomState:
Returns
-------
- samples : {ndarray, scalar}
+ samples : ndarray or scalar
where the values are all integers in [0, n].
See Also
@@ -4127,7 +4127,7 @@ cdef class RandomState:
Returns
-------
- samples : {ndarray, scalar}
+ samples : ndarray or scalar
where the values are all integers in [0, n].
See Also