summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--doc/source/about.rst5
-rw-r--r--doc/source/reference/routines.numarray.rst7
-rw-r--r--doc/source/reference/routines.oldnumeric.rst9
-rw-r--r--numpy/lib/function_base.py16
4 files changed, 9 insertions, 28 deletions
diff --git a/doc/source/about.rst b/doc/source/about.rst
index cbddf9f33..0614c90af 100644
--- a/doc/source/about.rst
+++ b/doc/source/about.rst
@@ -18,10 +18,7 @@ data types can be defined. This allows *NumPy* to seamlessly and
speedily integrate with a wide variety of databases.
NumPy is a successor for two earlier scientific Python libraries:
-NumPy derives from the :doc:`old Numerice <reference/routines.oldnumeric>` code
-base and can be used as a replacement for *Numeric*. It also adds the features
-introduced by :doc:`Numarray <reference/routines.numarray>` and can also be
-used to replace *Numarray*.
+Numeric and Numarray.
NumPy community
---------------
diff --git a/doc/source/reference/routines.numarray.rst b/doc/source/reference/routines.numarray.rst
deleted file mode 100644
index 97251d293..000000000
--- a/doc/source/reference/routines.numarray.rst
+++ /dev/null
@@ -1,7 +0,0 @@
-:orphan:
-
-**********************
-Numarray compatibility
-**********************
-
-The numarray module was removed in NumPy 1.9.0.
diff --git a/doc/source/reference/routines.oldnumeric.rst b/doc/source/reference/routines.oldnumeric.rst
deleted file mode 100644
index 1a6218aac..000000000
--- a/doc/source/reference/routines.oldnumeric.rst
+++ /dev/null
@@ -1,9 +0,0 @@
-:orphan:
-
-*************************
-Old Numeric compatibility
-*************************
-
-.. currentmodule:: numpy
-
-The oldnumeric module was removed in NumPy 1.9.0.
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index c06065ba6..07c3f1478 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -3398,9 +3398,9 @@ def _median(a, axis=None, out=None, overwrite_input=False):
def percentile(a, q, axis=None, out=None,
overwrite_input=False, interpolation='linear', keepdims=False):
"""
- Compute the qth percentile of the data along the specified axis.
+ Compute the q-th percentile of the data along the specified axis.
- Returns the qth percentile(s) of the array elements.
+ Returns the q-th percentile(s) of the array elements.
Parameters
----------
@@ -3467,7 +3467,7 @@ def percentile(a, q, axis=None, out=None,
Notes
-----
- Given a vector ``V`` of length ``N``, the ``q``-th percentile of
+ Given a vector ``V`` of length ``N``, the q-th percentile of
``V`` is the value ``q/100`` of the way from the minimum to the
maximum in a sorted copy of ``V``. The values and distances of
the two nearest neighbors as well as the `interpolation` parameter
@@ -3543,7 +3543,7 @@ def percentile(a, q, axis=None, out=None,
def quantile(a, q, axis=None, out=None,
overwrite_input=False, interpolation='linear', keepdims=False):
"""
- Compute the qth quantile of the data along the specified axis.
+ Compute the q-th quantile of the data along the specified axis.
..versionadded:: 1.15.0
Parameters
@@ -3603,7 +3603,7 @@ def quantile(a, q, axis=None, out=None,
Notes
-----
- Given a vector ``V`` of length ``N``, the ``q``-th quantile of
+ Given a vector ``V`` of length ``N``, the q-th quantile of
``V`` is the value ``q`` of the way from the minimum to the
maximum in a sorted copy of ``V``. The values and distances of
the two nearest neighbors as well as the `interpolation` parameter
@@ -3721,7 +3721,7 @@ def _quantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False,
indices = concatenate((indices, [-1]))
ap.partition(indices, axis=axis)
- # ensure axis with qth is first
+ # ensure axis with q-th is first
ap = np.moveaxis(ap, axis, 0)
axis = 0
@@ -3754,7 +3754,7 @@ def _quantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False,
ap.partition(concatenate((indices_below, indices_above)), axis=axis)
- # ensure axis with qth is first
+ # ensure axis with q-th is first
ap = np.moveaxis(ap, axis, 0)
weights_below = np.moveaxis(weights_below, axis, 0)
weights_above = np.moveaxis(weights_above, axis, 0)
@@ -3768,7 +3768,7 @@ def _quantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False,
x1 = take(ap, indices_below, axis=axis) * weights_below
x2 = take(ap, indices_above, axis=axis) * weights_above
- # ensure axis with qth is first
+ # ensure axis with q-th is first
x1 = np.moveaxis(x1, axis, 0)
x2 = np.moveaxis(x2, axis, 0)