diff options
-rw-r--r-- | numpy/__init__.pyi | 20 | ||||
-rw-r--r-- | numpy/compat/py3k.py | 3 | ||||
-rw-r--r-- | numpy/core/_methods.py | 5 | ||||
-rw-r--r-- | numpy/core/memmap.py | 12 | ||||
-rw-r--r-- | numpy/core/records.py | 7 | ||||
-rw-r--r-- | numpy/lib/npyio.py | 6 | ||||
-rw-r--r-- | numpy/typing/tests/data/reveal/array_constructors.py | 112 | ||||
-rw-r--r-- | numpy/typing/tests/data/reveal/comparisons.py | 72 | ||||
-rw-r--r-- | numpy/typing/tests/data/reveal/fromnumeric.py | 252 | ||||
-rw-r--r-- | numpy/typing/tests/data/reveal/ndarray_misc.py | 98 | ||||
-rw-r--r-- | numpy/typing/tests/data/reveal/numeric.py | 62 |
11 files changed, 329 insertions, 320 deletions
diff --git a/numpy/__init__.pyi b/numpy/__init__.pyi index ad37979ed..9f3ba3400 100644 --- a/numpy/__init__.pyi +++ b/numpy/__init__.pyi @@ -914,8 +914,6 @@ class dtype(Generic[_DTypeScalar]): @property def type(self) -> Type[generic]: ... -_DType = dtype # to avoid name conflicts with ndarray.dtype - class _flagsobj: aligned: bool updateifcopy: bool @@ -1438,10 +1436,16 @@ class _ArrayOrScalarCommon: keepdims: bool = ..., ) -> _NdArraySubClass: ... +_DType = TypeVar("_DType", bound=dtype[Any]) + +# TODO: Set the `bound` to something more suitable once we +# have proper shape support +_ShapeType = TypeVar("_ShapeType", bound=Any) + _BufferType = Union[ndarray, bytes, bytearray, memoryview] _Casting = Literal["no", "equiv", "safe", "same_kind", "unsafe"] -class ndarray(_ArrayOrScalarCommon, Iterable, Sized, Container): +class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType]): @property def base(self) -> Optional[ndarray]: ... @property @@ -1466,8 +1470,6 @@ class ndarray(_ArrayOrScalarCommon, Iterable, Sized, Container): order: _OrderKACF = ..., ) -> _ArraySelf: ... @property - def dtype(self) -> _DType: ... - @property def ctypes(self) -> _ctypes: ... @property def shape(self) -> _Shape: ... @@ -1626,6 +1628,9 @@ class ndarray(_ArrayOrScalarCommon, Iterable, Sized, Container): def __iand__(self: _ArraySelf, other: ArrayLike) -> _ArraySelf: ... def __ixor__(self: _ArraySelf, other: ArrayLike) -> _ArraySelf: ... def __ior__(self: _ArraySelf, other: ArrayLike) -> _ArraySelf: ... + # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype` + @property + def dtype(self) -> _DType: ... # NOTE: while `np.generic` is not technically an instance of `ABCMeta`, # the `@abstractmethod` decorator is herein used to (forcefully) deny @@ -1645,8 +1650,6 @@ class generic(_ArrayOrScalarCommon): @property def base(self) -> None: ... @property - def dtype(self: _ScalarType) -> _DType[_ScalarType]: ... - @property def ndim(self) -> Literal[0]: ... @property def size(self) -> Literal[1]: ... @@ -1665,6 +1668,9 @@ class generic(_ArrayOrScalarCommon): self: _ScalarType, axis: Union[Literal[0], Tuple[()]] = ... ) -> _ScalarType: ... def transpose(self: _ScalarType, __axes: Tuple[()] = ...) -> _ScalarType: ... + # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype` + @property + def dtype(self: _ScalarType) -> dtype[_ScalarType]: ... class number(generic, Generic[_NBit_co]): # type: ignore @property diff --git a/numpy/compat/py3k.py b/numpy/compat/py3k.py index f36aaca17..e1e236d92 100644 --- a/numpy/compat/py3k.py +++ b/numpy/compat/py3k.py @@ -94,6 +94,9 @@ class contextlib_nullcontext: cm = optional_cm if condition else nullcontext() with cm: # Perform operation, using optional_cm if condition is True + + .. note:: + Prefer using `contextlib.nullcontext` instead of this context manager. """ def __init__(self, enter_result=None): diff --git a/numpy/core/_methods.py b/numpy/core/_methods.py index c730e2035..1867ba68c 100644 --- a/numpy/core/_methods.py +++ b/numpy/core/_methods.py @@ -4,6 +4,7 @@ and the Python code for the NumPy-namespace function """ import warnings +from contextlib import nullcontext from numpy.core import multiarray as mu from numpy.core import umath as um @@ -11,7 +12,7 @@ from numpy.core._asarray import asanyarray from numpy.core import numerictypes as nt from numpy.core import _exceptions from numpy._globals import _NoValue -from numpy.compat import pickle, os_fspath, contextlib_nullcontext +from numpy.compat import pickle, os_fspath # save those O(100) nanoseconds! umr_maximum = um.maximum.reduce @@ -279,7 +280,7 @@ def _ptp(a, axis=None, out=None, keepdims=False): def _dump(self, file, protocol=2): if hasattr(file, 'write'): - ctx = contextlib_nullcontext(file) + ctx = nullcontext(file) else: ctx = open(os_fspath(file), "wb") with ctx as f: diff --git a/numpy/core/memmap.py b/numpy/core/memmap.py index 66653c0c1..892ad2540 100644 --- a/numpy/core/memmap.py +++ b/numpy/core/memmap.py @@ -1,8 +1,8 @@ +from contextlib import nullcontext + import numpy as np from .numeric import uint8, ndarray, dtype -from numpy.compat import ( - os_fspath, contextlib_nullcontext, is_pathlib_path -) +from numpy.compat import os_fspath, is_pathlib_path from numpy.core.overrides import set_module __all__ = ['memmap'] @@ -38,7 +38,7 @@ class memmap(ndarray): which returns a view into an mmap buffer. Flush the memmap instance to write the changes to the file. Currently there - is no API to close the underlying ``mmap``. It is tricky to ensure the + is no API to close the underlying ``mmap``. It is tricky to ensure the resource is actually closed, since it may be shared between different memmap instances. @@ -112,7 +112,7 @@ class memmap(ndarray): The memmap object can be used anywhere an ndarray is accepted. Given a memmap ``fp``, ``isinstance(fp, numpy.ndarray)`` returns ``True``. - + Memory-mapped files cannot be larger than 2GB on 32-bit systems. When a memmap causes a file to be created or extended beyond its @@ -223,7 +223,7 @@ class memmap(ndarray): raise ValueError("shape must be given") if hasattr(filename, 'read'): - f_ctx = contextlib_nullcontext(filename) + f_ctx = nullcontext(filename) else: f_ctx = open(os_fspath(filename), ('r' if mode == 'c' else mode)+'b') diff --git a/numpy/core/records.py b/numpy/core/records.py index c2f6c6965..00d456658 100644 --- a/numpy/core/records.py +++ b/numpy/core/records.py @@ -36,12 +36,11 @@ Record arrays allow us to access fields as properties:: import os import warnings from collections import Counter, OrderedDict +from contextlib import nullcontext from . import numeric as sb from . import numerictypes as nt -from numpy.compat import ( - os_fspath, contextlib_nullcontext -) +from numpy.compat import os_fspath from numpy.core.overrides import set_module from .arrayprint import get_printoptions @@ -914,7 +913,7 @@ def fromfile(fd, dtype=None, shape=None, offset=0, formats=None, # GH issue 2504. fd supports io.RawIOBase or io.BufferedIOBase interface. # Example of fd: gzip, BytesIO, BufferedReader # file already opened - ctx = contextlib_nullcontext(fd) + ctx = nullcontext(fd) else: # open file ctx = open(os_fspath(fd), 'rb') diff --git a/numpy/lib/npyio.py b/numpy/lib/npyio.py index 3b2de3e61..af8e28e42 100644 --- a/numpy/lib/npyio.py +++ b/numpy/lib/npyio.py @@ -24,7 +24,7 @@ from ._iotools import ( from numpy.compat import ( asbytes, asstr, asunicode, os_fspath, os_PathLike, - pickle, contextlib_nullcontext + pickle ) @@ -517,7 +517,7 @@ def save(file, arr, allow_pickle=True, fix_imports=True): # [1 2] [1 3] """ if hasattr(file, 'write'): - file_ctx = contextlib_nullcontext(file) + file_ctx = contextlib.nullcontext(file) else: file = os_fspath(file) if not file.endswith('.npy'): @@ -1792,7 +1792,7 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None, fid_ctx = contextlib.closing(fid) else: fid = fname - fid_ctx = contextlib_nullcontext(fid) + fid_ctx = contextlib.nullcontext(fid) fhd = iter(fid) except TypeError as e: raise TypeError( diff --git a/numpy/typing/tests/data/reveal/array_constructors.py b/numpy/typing/tests/data/reveal/array_constructors.py index 106174736..04d5cd229 100644 --- a/numpy/typing/tests/data/reveal/array_constructors.py +++ b/numpy/typing/tests/data/reveal/array_constructors.py @@ -11,92 +11,92 @@ C: List[int] def func(i: int, j: int, **kwargs: Any) -> SubClass: ... -reveal_type(np.asarray(A)) # E: ndarray -reveal_type(np.asarray(B)) # E: ndarray -reveal_type(np.asarray(C)) # E: ndarray +reveal_type(np.asarray(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.asarray(B)) # E: numpy.ndarray[Any, Any] +reveal_type(np.asarray(C)) # E: numpy.ndarray[Any, Any] -reveal_type(np.asanyarray(A)) # E: ndarray +reveal_type(np.asanyarray(A)) # E: numpy.ndarray[Any, Any] reveal_type(np.asanyarray(B)) # E: SubClass -reveal_type(np.asanyarray(B, dtype=int)) # E: ndarray -reveal_type(np.asanyarray(C)) # E: ndarray +reveal_type(np.asanyarray(B, dtype=int)) # E: numpy.ndarray[Any, Any] +reveal_type(np.asanyarray(C)) # E: numpy.ndarray[Any, Any] -reveal_type(np.ascontiguousarray(A)) # E: ndarray -reveal_type(np.ascontiguousarray(B)) # E: ndarray -reveal_type(np.ascontiguousarray(C)) # E: ndarray +reveal_type(np.ascontiguousarray(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.ascontiguousarray(B)) # E: numpy.ndarray[Any, Any] +reveal_type(np.ascontiguousarray(C)) # E: numpy.ndarray[Any, Any] -reveal_type(np.asfortranarray(A)) # E: ndarray -reveal_type(np.asfortranarray(B)) # E: ndarray -reveal_type(np.asfortranarray(C)) # E: ndarray +reveal_type(np.asfortranarray(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.asfortranarray(B)) # E: numpy.ndarray[Any, Any] +reveal_type(np.asfortranarray(C)) # E: numpy.ndarray[Any, Any] -reveal_type(np.require(A)) # E: ndarray +reveal_type(np.require(A)) # E: numpy.ndarray[Any, Any] reveal_type(np.require(B)) # E: SubClass reveal_type(np.require(B, requirements=None)) # E: SubClass -reveal_type(np.require(B, dtype=int)) # E: ndarray -reveal_type(np.require(B, requirements="E")) # E: ndarray -reveal_type(np.require(B, requirements=["ENSUREARRAY"])) # E: ndarray -reveal_type(np.require(B, requirements={"F", "E"})) # E: ndarray +reveal_type(np.require(B, dtype=int)) # E: numpy.ndarray[Any, Any] +reveal_type(np.require(B, requirements="E")) # E: numpy.ndarray[Any, Any] +reveal_type(np.require(B, requirements=["ENSUREARRAY"])) # E: numpy.ndarray[Any, Any] +reveal_type(np.require(B, requirements={"F", "E"})) # E: numpy.ndarray[Any, Any] reveal_type(np.require(B, requirements=["C", "OWNDATA"])) # E: SubClass reveal_type(np.require(B, requirements="W")) # E: SubClass reveal_type(np.require(B, requirements="A")) # E: SubClass -reveal_type(np.require(C)) # E: ndarray +reveal_type(np.require(C)) # E: numpy.ndarray[Any, Any] -reveal_type(np.linspace(0, 10)) # E: numpy.ndarray -reveal_type(np.linspace(0, 10, retstep=True)) # E: Tuple[numpy.ndarray, numpy.inexact[Any]] -reveal_type(np.logspace(0, 10)) # E: numpy.ndarray -reveal_type(np.geomspace(1, 10)) # E: numpy.ndarray +reveal_type(np.linspace(0, 10)) # E: numpy.ndarray[Any, Any] +reveal_type(np.linspace(0, 10, retstep=True)) # E: Tuple[numpy.ndarray[Any, Any], numpy.inexact[Any]] +reveal_type(np.logspace(0, 10)) # E: numpy.ndarray[Any, Any] +reveal_type(np.geomspace(1, 10)) # E: numpy.ndarray[Any, Any] -reveal_type(np.zeros_like(A)) # E: numpy.ndarray -reveal_type(np.zeros_like(C)) # E: numpy.ndarray +reveal_type(np.zeros_like(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.zeros_like(C)) # E: numpy.ndarray[Any, Any] reveal_type(np.zeros_like(B)) # E: SubClass -reveal_type(np.zeros_like(B, dtype=np.int64)) # E: numpy.ndarray +reveal_type(np.zeros_like(B, dtype=np.int64)) # E: numpy.ndarray[Any, Any] -reveal_type(np.ones_like(A)) # E: numpy.ndarray -reveal_type(np.ones_like(C)) # E: numpy.ndarray +reveal_type(np.ones_like(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.ones_like(C)) # E: numpy.ndarray[Any, Any] reveal_type(np.ones_like(B)) # E: SubClass -reveal_type(np.ones_like(B, dtype=np.int64)) # E: numpy.ndarray +reveal_type(np.ones_like(B, dtype=np.int64)) # E: numpy.ndarray[Any, Any] -reveal_type(np.empty_like(A)) # E: numpy.ndarray -reveal_type(np.empty_like(C)) # E: numpy.ndarray +reveal_type(np.empty_like(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.empty_like(C)) # E: numpy.ndarray[Any, Any] reveal_type(np.empty_like(B)) # E: SubClass -reveal_type(np.empty_like(B, dtype=np.int64)) # E: numpy.ndarray +reveal_type(np.empty_like(B, dtype=np.int64)) # E: numpy.ndarray[Any, Any] -reveal_type(np.full_like(A, i8)) # E: numpy.ndarray -reveal_type(np.full_like(C, i8)) # E: numpy.ndarray +reveal_type(np.full_like(A, i8)) # E: numpy.ndarray[Any, Any] +reveal_type(np.full_like(C, i8)) # E: numpy.ndarray[Any, Any] reveal_type(np.full_like(B, i8)) # E: SubClass -reveal_type(np.full_like(B, i8, dtype=np.int64)) # E: numpy.ndarray +reveal_type(np.full_like(B, i8, dtype=np.int64)) # E: numpy.ndarray[Any, Any] -reveal_type(np.ones(1)) # E: numpy.ndarray -reveal_type(np.ones([1, 1, 1])) # E: numpy.ndarray +reveal_type(np.ones(1)) # E: numpy.ndarray[Any, Any] +reveal_type(np.ones([1, 1, 1])) # E: numpy.ndarray[Any, Any] -reveal_type(np.full(1, i8)) # E: numpy.ndarray -reveal_type(np.full([1, 1, 1], i8)) # E: numpy.ndarray +reveal_type(np.full(1, i8)) # E: numpy.ndarray[Any, Any] +reveal_type(np.full([1, 1, 1], i8)) # E: numpy.ndarray[Any, Any] -reveal_type(np.indices([1, 2, 3])) # E: numpy.ndarray -reveal_type(np.indices([1, 2, 3], sparse=True)) # E: tuple[numpy.ndarray] +reveal_type(np.indices([1, 2, 3])) # E: numpy.ndarray[Any, Any] +reveal_type(np.indices([1, 2, 3], sparse=True)) # E: tuple[numpy.ndarray[Any, Any]] reveal_type(np.fromfunction(func, (3, 5))) # E: SubClass -reveal_type(np.identity(10)) # E: numpy.ndarray +reveal_type(np.identity(10)) # E: numpy.ndarray[Any, Any] -reveal_type(np.atleast_1d(A)) # E: numpy.ndarray -reveal_type(np.atleast_1d(C)) # E: numpy.ndarray -reveal_type(np.atleast_1d(A, A)) # E: list[numpy.ndarray] -reveal_type(np.atleast_1d(A, C)) # E: list[numpy.ndarray] -reveal_type(np.atleast_1d(C, C)) # E: list[numpy.ndarray] +reveal_type(np.atleast_1d(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.atleast_1d(C)) # E: numpy.ndarray[Any, Any] +reveal_type(np.atleast_1d(A, A)) # E: list[numpy.ndarray[Any, Any]] +reveal_type(np.atleast_1d(A, C)) # E: list[numpy.ndarray[Any, Any]] +reveal_type(np.atleast_1d(C, C)) # E: list[numpy.ndarray[Any, Any]] -reveal_type(np.atleast_2d(A)) # E: numpy.ndarray +reveal_type(np.atleast_2d(A)) # E: numpy.ndarray[Any, Any] -reveal_type(np.atleast_3d(A)) # E: numpy.ndarray +reveal_type(np.atleast_3d(A)) # E: numpy.ndarray[Any, Any] -reveal_type(np.vstack([A, A])) # E: numpy.ndarray -reveal_type(np.vstack([A, C])) # E: numpy.ndarray -reveal_type(np.vstack([C, C])) # E: numpy.ndarray +reveal_type(np.vstack([A, A])) # E: numpy.ndarray[Any, Any] +reveal_type(np.vstack([A, C])) # E: numpy.ndarray[Any, Any] +reveal_type(np.vstack([C, C])) # E: numpy.ndarray[Any, Any] -reveal_type(np.hstack([A, A])) # E: numpy.ndarray +reveal_type(np.hstack([A, A])) # E: numpy.ndarray[Any, Any] -reveal_type(np.stack([A, A])) # E: numpy.ndarray -reveal_type(np.stack([A, A], axis=0)) # E: numpy.ndarray +reveal_type(np.stack([A, A])) # E: numpy.ndarray[Any, Any] +reveal_type(np.stack([A, A], axis=0)) # E: numpy.ndarray[Any, Any] reveal_type(np.stack([A, A], out=B)) # E: SubClass -reveal_type(np.block([[A, A], [A, A]])) # E: numpy.ndarray -reveal_type(np.block(C)) # E: numpy.ndarray +reveal_type(np.block([[A, A], [A, A]])) # E: numpy.ndarray[Any, Any] +reveal_type(np.block(C)) # E: numpy.ndarray[Any, Any] diff --git a/numpy/typing/tests/data/reveal/comparisons.py b/numpy/typing/tests/data/reveal/comparisons.py index 82d1fa6de..507f713c7 100644 --- a/numpy/typing/tests/data/reveal/comparisons.py +++ b/numpy/typing/tests/data/reveal/comparisons.py @@ -33,8 +33,8 @@ reveal_type(td > td) # E: numpy.bool_ reveal_type(td > i) # E: numpy.bool_ reveal_type(td > i4) # E: numpy.bool_ reveal_type(td > i8) # E: numpy.bool_ -reveal_type(td > AR) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(td > SEQ) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(td > AR) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(td > SEQ) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] # boolean @@ -51,8 +51,8 @@ reveal_type(b_ > f4) # E: numpy.bool_ reveal_type(b_ > c) # E: numpy.bool_ reveal_type(b_ > c16) # E: numpy.bool_ reveal_type(b_ > c8) # E: numpy.bool_ -reveal_type(b_ > AR) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(b_ > SEQ) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(b_ > AR) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(b_ > SEQ) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] # Complex @@ -67,8 +67,8 @@ reveal_type(c16 > b) # E: numpy.bool_ reveal_type(c16 > c) # E: numpy.bool_ reveal_type(c16 > f) # E: numpy.bool_ reveal_type(c16 > i) # E: numpy.bool_ -reveal_type(c16 > AR) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(c16 > SEQ) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(c16 > AR) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(c16 > SEQ) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] reveal_type(c16 > c16) # E: numpy.bool_ reveal_type(f8 > c16) # E: numpy.bool_ @@ -81,8 +81,8 @@ reveal_type(b > c16) # E: numpy.bool_ reveal_type(c > c16) # E: numpy.bool_ reveal_type(f > c16) # E: numpy.bool_ reveal_type(i > c16) # E: numpy.bool_ -reveal_type(AR > c16) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(SEQ > c16) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(AR > c16) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(SEQ > c16) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] reveal_type(c8 > c16) # E: numpy.bool_ reveal_type(c8 > f8) # E: numpy.bool_ @@ -95,8 +95,8 @@ reveal_type(c8 > b) # E: numpy.bool_ reveal_type(c8 > c) # E: numpy.bool_ reveal_type(c8 > f) # E: numpy.bool_ reveal_type(c8 > i) # E: numpy.bool_ -reveal_type(c8 > AR) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(c8 > SEQ) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(c8 > AR) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(c8 > SEQ) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] reveal_type(c16 > c8) # E: numpy.bool_ reveal_type(f8 > c8) # E: numpy.bool_ @@ -109,8 +109,8 @@ reveal_type(b > c8) # E: numpy.bool_ reveal_type(c > c8) # E: numpy.bool_ reveal_type(f > c8) # E: numpy.bool_ reveal_type(i > c8) # E: numpy.bool_ -reveal_type(AR > c8) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(SEQ > c8) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(AR > c8) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(SEQ > c8) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] # Float @@ -123,8 +123,8 @@ reveal_type(f8 > b) # E: numpy.bool_ reveal_type(f8 > c) # E: numpy.bool_ reveal_type(f8 > f) # E: numpy.bool_ reveal_type(f8 > i) # E: numpy.bool_ -reveal_type(f8 > AR) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(f8 > SEQ) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(f8 > AR) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(f8 > SEQ) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] reveal_type(f8 > f8) # E: numpy.bool_ reveal_type(i8 > f8) # E: numpy.bool_ @@ -135,8 +135,8 @@ reveal_type(b > f8) # E: numpy.bool_ reveal_type(c > f8) # E: numpy.bool_ reveal_type(f > f8) # E: numpy.bool_ reveal_type(i > f8) # E: numpy.bool_ -reveal_type(AR > f8) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(SEQ > f8) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(AR > f8) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(SEQ > f8) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] reveal_type(f4 > f8) # E: numpy.bool_ reveal_type(f4 > i8) # E: numpy.bool_ @@ -147,8 +147,8 @@ reveal_type(f4 > b) # E: numpy.bool_ reveal_type(f4 > c) # E: numpy.bool_ reveal_type(f4 > f) # E: numpy.bool_ reveal_type(f4 > i) # E: numpy.bool_ -reveal_type(f4 > AR) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(f4 > SEQ) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(f4 > AR) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(f4 > SEQ) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] reveal_type(f8 > f4) # E: numpy.bool_ reveal_type(i8 > f4) # E: numpy.bool_ @@ -159,8 +159,8 @@ reveal_type(b > f4) # E: numpy.bool_ reveal_type(c > f4) # E: numpy.bool_ reveal_type(f > f4) # E: numpy.bool_ reveal_type(i > f4) # E: numpy.bool_ -reveal_type(AR > f4) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(SEQ > f4) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(AR > f4) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(SEQ > f4) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] # Int @@ -173,8 +173,8 @@ reveal_type(i8 > b) # E: numpy.bool_ reveal_type(i8 > c) # E: numpy.bool_ reveal_type(i8 > f) # E: numpy.bool_ reveal_type(i8 > i) # E: numpy.bool_ -reveal_type(i8 > AR) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(i8 > SEQ) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(i8 > AR) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(i8 > SEQ) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] reveal_type(u8 > u8) # E: numpy.bool_ reveal_type(u8 > i4) # E: numpy.bool_ @@ -184,8 +184,8 @@ reveal_type(u8 > b) # E: numpy.bool_ reveal_type(u8 > c) # E: numpy.bool_ reveal_type(u8 > f) # E: numpy.bool_ reveal_type(u8 > i) # E: numpy.bool_ -reveal_type(u8 > AR) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(u8 > SEQ) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(u8 > AR) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(u8 > SEQ) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] reveal_type(i8 > i8) # E: numpy.bool_ reveal_type(u8 > i8) # E: numpy.bool_ @@ -196,8 +196,8 @@ reveal_type(b > i8) # E: numpy.bool_ reveal_type(c > i8) # E: numpy.bool_ reveal_type(f > i8) # E: numpy.bool_ reveal_type(i > i8) # E: numpy.bool_ -reveal_type(AR > i8) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(SEQ > i8) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(AR > i8) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(SEQ > i8) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] reveal_type(u8 > u8) # E: numpy.bool_ reveal_type(i4 > u8) # E: numpy.bool_ @@ -207,16 +207,16 @@ reveal_type(b > u8) # E: numpy.bool_ reveal_type(c > u8) # E: numpy.bool_ reveal_type(f > u8) # E: numpy.bool_ reveal_type(i > u8) # E: numpy.bool_ -reveal_type(AR > u8) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(SEQ > u8) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(AR > u8) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(SEQ > u8) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] reveal_type(i4 > i8) # E: numpy.bool_ reveal_type(i4 > i4) # E: numpy.bool_ reveal_type(i4 > i) # E: numpy.bool_ reveal_type(i4 > b_) # E: numpy.bool_ reveal_type(i4 > b) # E: numpy.bool_ -reveal_type(i4 > AR) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(i4 > SEQ) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(i4 > AR) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(i4 > SEQ) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] reveal_type(u4 > i8) # E: numpy.bool_ reveal_type(u4 > i4) # E: numpy.bool_ @@ -225,16 +225,16 @@ reveal_type(u4 > u4) # E: numpy.bool_ reveal_type(u4 > i) # E: numpy.bool_ reveal_type(u4 > b_) # E: numpy.bool_ reveal_type(u4 > b) # E: numpy.bool_ -reveal_type(u4 > AR) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(u4 > SEQ) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(u4 > AR) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(u4 > SEQ) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] reveal_type(i8 > i4) # E: numpy.bool_ reveal_type(i4 > i4) # E: numpy.bool_ reveal_type(i > i4) # E: numpy.bool_ reveal_type(b_ > i4) # E: numpy.bool_ reveal_type(b > i4) # E: numpy.bool_ -reveal_type(AR > i4) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(SEQ > i4) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(AR > i4) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(SEQ > i4) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] reveal_type(i8 > u4) # E: numpy.bool_ reveal_type(i4 > u4) # E: numpy.bool_ @@ -243,5 +243,5 @@ reveal_type(u4 > u4) # E: numpy.bool_ reveal_type(b_ > u4) # E: numpy.bool_ reveal_type(b > u4) # E: numpy.bool_ reveal_type(i > u4) # E: numpy.bool_ -reveal_type(AR > u4) # E: Union[numpy.ndarray, numpy.bool_] -reveal_type(SEQ > u4) # E: Union[numpy.ndarray, numpy.bool_] +reveal_type(AR > u4) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] +reveal_type(SEQ > u4) # E: Union[numpy.ndarray[Any, Any], numpy.bool_] diff --git a/numpy/typing/tests/data/reveal/fromnumeric.py b/numpy/typing/tests/data/reveal/fromnumeric.py index 75865c285..2972fa1af 100644 --- a/numpy/typing/tests/data/reveal/fromnumeric.py +++ b/numpy/typing/tests/data/reveal/fromnumeric.py @@ -24,104 +24,104 @@ reveal_type( np.take(B, 0) # E: Union[numpy.generic, datetime.datetime, datetime.timedelta] ) reveal_type( - np.take( # E: Union[Union[numpy.generic, datetime.datetime, datetime.timedelta], numpy.ndarray] + np.take( # E: Union[Union[numpy.generic, datetime.datetime, datetime.timedelta], numpy.ndarray[Any, Any]] A, [0] ) ) reveal_type( - np.take( # E: Union[Union[numpy.generic, datetime.datetime, datetime.timedelta], numpy.ndarray] + np.take( # E: Union[Union[numpy.generic, datetime.datetime, datetime.timedelta], numpy.ndarray[Any, Any]] B, [0] ) ) -reveal_type(np.reshape(a, 1)) # E: numpy.ndarray -reveal_type(np.reshape(b, 1)) # E: numpy.ndarray -reveal_type(np.reshape(c, 1)) # E: numpy.ndarray -reveal_type(np.reshape(A, 1)) # E: numpy.ndarray -reveal_type(np.reshape(B, 1)) # E: numpy.ndarray +reveal_type(np.reshape(a, 1)) # E: numpy.ndarray[Any, Any] +reveal_type(np.reshape(b, 1)) # E: numpy.ndarray[Any, Any] +reveal_type(np.reshape(c, 1)) # E: numpy.ndarray[Any, Any] +reveal_type(np.reshape(A, 1)) # E: numpy.ndarray[Any, Any] +reveal_type(np.reshape(B, 1)) # E: numpy.ndarray[Any, Any] reveal_type(np.choose(a, [True, True])) # E: numpy.bool_ -reveal_type(np.choose(A, [True, True])) # E: numpy.ndarray +reveal_type(np.choose(A, [True, True])) # E: numpy.ndarray[Any, Any] -reveal_type(np.repeat(a, 1)) # E: numpy.ndarray -reveal_type(np.repeat(b, 1)) # E: numpy.ndarray -reveal_type(np.repeat(c, 1)) # E: numpy.ndarray -reveal_type(np.repeat(A, 1)) # E: numpy.ndarray -reveal_type(np.repeat(B, 1)) # E: numpy.ndarray +reveal_type(np.repeat(a, 1)) # E: numpy.ndarray[Any, Any] +reveal_type(np.repeat(b, 1)) # E: numpy.ndarray[Any, Any] +reveal_type(np.repeat(c, 1)) # E: numpy.ndarray[Any, Any] +reveal_type(np.repeat(A, 1)) # E: numpy.ndarray[Any, Any] +reveal_type(np.repeat(B, 1)) # E: numpy.ndarray[Any, Any] # TODO: Add tests for np.put() -reveal_type(np.swapaxes(A, 0, 0)) # E: numpy.ndarray -reveal_type(np.swapaxes(B, 0, 0)) # E: numpy.ndarray +reveal_type(np.swapaxes(A, 0, 0)) # E: numpy.ndarray[Any, Any] +reveal_type(np.swapaxes(B, 0, 0)) # E: numpy.ndarray[Any, Any] -reveal_type(np.transpose(a)) # E: numpy.ndarray -reveal_type(np.transpose(b)) # E: numpy.ndarray -reveal_type(np.transpose(c)) # E: numpy.ndarray -reveal_type(np.transpose(A)) # E: numpy.ndarray -reveal_type(np.transpose(B)) # E: numpy.ndarray +reveal_type(np.transpose(a)) # E: numpy.ndarray[Any, Any] +reveal_type(np.transpose(b)) # E: numpy.ndarray[Any, Any] +reveal_type(np.transpose(c)) # E: numpy.ndarray[Any, Any] +reveal_type(np.transpose(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.transpose(B)) # E: numpy.ndarray[Any, Any] -reveal_type(np.partition(a, 0, axis=None)) # E: numpy.ndarray -reveal_type(np.partition(b, 0, axis=None)) # E: numpy.ndarray -reveal_type(np.partition(c, 0, axis=None)) # E: numpy.ndarray -reveal_type(np.partition(A, 0)) # E: numpy.ndarray -reveal_type(np.partition(B, 0)) # E: numpy.ndarray +reveal_type(np.partition(a, 0, axis=None)) # E: numpy.ndarray[Any, Any] +reveal_type(np.partition(b, 0, axis=None)) # E: numpy.ndarray[Any, Any] +reveal_type(np.partition(c, 0, axis=None)) # E: numpy.ndarray[Any, Any] +reveal_type(np.partition(A, 0)) # E: numpy.ndarray[Any, Any] +reveal_type(np.partition(B, 0)) # E: numpy.ndarray[Any, Any] reveal_type(np.argpartition(a, 0)) # E: numpy.integer[Any] reveal_type(np.argpartition(b, 0)) # E: numpy.integer[Any] -reveal_type(np.argpartition(c, 0)) # E: numpy.ndarray -reveal_type(np.argpartition(A, 0)) # E: numpy.ndarray -reveal_type(np.argpartition(B, 0)) # E: numpy.ndarray +reveal_type(np.argpartition(c, 0)) # E: numpy.ndarray[Any, Any] +reveal_type(np.argpartition(A, 0)) # E: numpy.ndarray[Any, Any] +reveal_type(np.argpartition(B, 0)) # E: numpy.ndarray[Any, Any] -reveal_type(np.sort(A, 0)) # E: numpy.ndarray -reveal_type(np.sort(B, 0)) # E: numpy.ndarray +reveal_type(np.sort(A, 0)) # E: numpy.ndarray[Any, Any] +reveal_type(np.sort(B, 0)) # E: numpy.ndarray[Any, Any] -reveal_type(np.argsort(A, 0)) # E: numpy.ndarray -reveal_type(np.argsort(B, 0)) # E: numpy.ndarray +reveal_type(np.argsort(A, 0)) # E: numpy.ndarray[Any, Any] +reveal_type(np.argsort(B, 0)) # E: numpy.ndarray[Any, Any] reveal_type(np.argmax(A)) # E: numpy.integer[Any] reveal_type(np.argmax(B)) # E: numpy.integer[Any] -reveal_type(np.argmax(A, axis=0)) # E: Union[numpy.integer[Any], numpy.ndarray] -reveal_type(np.argmax(B, axis=0)) # E: Union[numpy.integer[Any], numpy.ndarray] +reveal_type(np.argmax(A, axis=0)) # E: Union[numpy.integer[Any], numpy.ndarray[Any, Any]] +reveal_type(np.argmax(B, axis=0)) # E: Union[numpy.integer[Any], numpy.ndarray[Any, Any]] reveal_type(np.argmin(A)) # E: numpy.integer[Any] reveal_type(np.argmin(B)) # E: numpy.integer[Any] -reveal_type(np.argmin(A, axis=0)) # E: Union[numpy.integer[Any], numpy.ndarray] -reveal_type(np.argmin(B, axis=0)) # E: Union[numpy.integer[Any], numpy.ndarray] +reveal_type(np.argmin(A, axis=0)) # E: Union[numpy.integer[Any], numpy.ndarray[Any, Any]] +reveal_type(np.argmin(B, axis=0)) # E: Union[numpy.integer[Any], numpy.ndarray[Any, Any]] reveal_type(np.searchsorted(A[0], 0)) # E: numpy.integer[Any] reveal_type(np.searchsorted(B[0], 0)) # E: numpy.integer[Any] -reveal_type(np.searchsorted(A[0], [0])) # E: numpy.ndarray -reveal_type(np.searchsorted(B[0], [0])) # E: numpy.ndarray +reveal_type(np.searchsorted(A[0], [0])) # E: numpy.ndarray[Any, Any] +reveal_type(np.searchsorted(B[0], [0])) # E: numpy.ndarray[Any, Any] -reveal_type(np.resize(a, (5, 5))) # E: numpy.ndarray -reveal_type(np.resize(b, (5, 5))) # E: numpy.ndarray -reveal_type(np.resize(c, (5, 5))) # E: numpy.ndarray -reveal_type(np.resize(A, (5, 5))) # E: numpy.ndarray -reveal_type(np.resize(B, (5, 5))) # E: numpy.ndarray +reveal_type(np.resize(a, (5, 5))) # E: numpy.ndarray[Any, Any] +reveal_type(np.resize(b, (5, 5))) # E: numpy.ndarray[Any, Any] +reveal_type(np.resize(c, (5, 5))) # E: numpy.ndarray[Any, Any] +reveal_type(np.resize(A, (5, 5))) # E: numpy.ndarray[Any, Any] +reveal_type(np.resize(B, (5, 5))) # E: numpy.ndarray[Any, Any] reveal_type(np.squeeze(a)) # E: numpy.bool_ reveal_type(np.squeeze(b)) # E: numpy.floating[numpy.typing._32Bit] -reveal_type(np.squeeze(c)) # E: numpy.ndarray -reveal_type(np.squeeze(A)) # E: numpy.ndarray -reveal_type(np.squeeze(B)) # E: numpy.ndarray +reveal_type(np.squeeze(c)) # E: numpy.ndarray[Any, Any] +reveal_type(np.squeeze(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.squeeze(B)) # E: numpy.ndarray[Any, Any] -reveal_type(np.diagonal(A)) # E: numpy.ndarray -reveal_type(np.diagonal(B)) # E: numpy.ndarray +reveal_type(np.diagonal(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.diagonal(B)) # E: numpy.ndarray[Any, Any] -reveal_type(np.trace(A)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.trace(B)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(np.trace(A)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.trace(B)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] -reveal_type(np.ravel(a)) # E: numpy.ndarray -reveal_type(np.ravel(b)) # E: numpy.ndarray -reveal_type(np.ravel(c)) # E: numpy.ndarray -reveal_type(np.ravel(A)) # E: numpy.ndarray -reveal_type(np.ravel(B)) # E: numpy.ndarray +reveal_type(np.ravel(a)) # E: numpy.ndarray[Any, Any] +reveal_type(np.ravel(b)) # E: numpy.ndarray[Any, Any] +reveal_type(np.ravel(c)) # E: numpy.ndarray[Any, Any] +reveal_type(np.ravel(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.ravel(B)) # E: numpy.ndarray[Any, Any] -reveal_type(np.nonzero(a)) # E: tuple[numpy.ndarray] -reveal_type(np.nonzero(b)) # E: tuple[numpy.ndarray] -reveal_type(np.nonzero(c)) # E: tuple[numpy.ndarray] -reveal_type(np.nonzero(A)) # E: tuple[numpy.ndarray] -reveal_type(np.nonzero(B)) # E: tuple[numpy.ndarray] +reveal_type(np.nonzero(a)) # E: tuple[numpy.ndarray[Any, Any]] +reveal_type(np.nonzero(b)) # E: tuple[numpy.ndarray[Any, Any]] +reveal_type(np.nonzero(c)) # E: tuple[numpy.ndarray[Any, Any]] +reveal_type(np.nonzero(A)) # E: tuple[numpy.ndarray[Any, Any]] +reveal_type(np.nonzero(B)) # E: tuple[numpy.ndarray[Any, Any]] reveal_type(np.shape(a)) # E: tuple[builtins.int] reveal_type(np.shape(b)) # E: tuple[builtins.int] @@ -129,99 +129,99 @@ reveal_type(np.shape(c)) # E: tuple[builtins.int] reveal_type(np.shape(A)) # E: tuple[builtins.int] reveal_type(np.shape(B)) # E: tuple[builtins.int] -reveal_type(np.compress([True], a)) # E: numpy.ndarray -reveal_type(np.compress([True], b)) # E: numpy.ndarray -reveal_type(np.compress([True], c)) # E: numpy.ndarray -reveal_type(np.compress([True], A)) # E: numpy.ndarray -reveal_type(np.compress([True], B)) # E: numpy.ndarray +reveal_type(np.compress([True], a)) # E: numpy.ndarray[Any, Any] +reveal_type(np.compress([True], b)) # E: numpy.ndarray[Any, Any] +reveal_type(np.compress([True], c)) # E: numpy.ndarray[Any, Any] +reveal_type(np.compress([True], A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.compress([True], B)) # E: numpy.ndarray[Any, Any] reveal_type(np.clip(a, 0, 1.0)) # E: numpy.number[Any] reveal_type(np.clip(b, -1, 1)) # E: numpy.floating[numpy.typing._32Bit] reveal_type(np.clip(c, 0, 1)) # E: numpy.number[Any] -reveal_type(np.clip(A, 0, 1)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.clip(B, 0, 1)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(np.clip(A, 0, 1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.clip(B, 0, 1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(np.sum(a)) # E: numpy.number[Any] reveal_type(np.sum(b)) # E: numpy.floating[numpy.typing._32Bit] reveal_type(np.sum(c)) # E: numpy.number[Any] reveal_type(np.sum(A)) # E: numpy.number[Any] reveal_type(np.sum(B)) # E: numpy.number[Any] -reveal_type(np.sum(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.sum(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(np.sum(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.sum(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(np.all(a)) # E: numpy.bool_ reveal_type(np.all(b)) # E: numpy.bool_ reveal_type(np.all(c)) # E: numpy.bool_ reveal_type(np.all(A)) # E: numpy.bool_ reveal_type(np.all(B)) # E: numpy.bool_ -reveal_type(np.all(A, axis=0)) # E: Union[numpy.bool_, numpy.ndarray] -reveal_type(np.all(B, axis=0)) # E: Union[numpy.bool_, numpy.ndarray] -reveal_type(np.all(A, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray] -reveal_type(np.all(B, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray] +reveal_type(np.all(A, axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] +reveal_type(np.all(B, axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] +reveal_type(np.all(A, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] +reveal_type(np.all(B, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] reveal_type(np.any(a)) # E: numpy.bool_ reveal_type(np.any(b)) # E: numpy.bool_ reveal_type(np.any(c)) # E: numpy.bool_ reveal_type(np.any(A)) # E: numpy.bool_ reveal_type(np.any(B)) # E: numpy.bool_ -reveal_type(np.any(A, axis=0)) # E: Union[numpy.bool_, numpy.ndarray] -reveal_type(np.any(B, axis=0)) # E: Union[numpy.bool_, numpy.ndarray] -reveal_type(np.any(A, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray] -reveal_type(np.any(B, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray] +reveal_type(np.any(A, axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] +reveal_type(np.any(B, axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] +reveal_type(np.any(A, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] +reveal_type(np.any(B, keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] -reveal_type(np.cumsum(a)) # E: numpy.ndarray -reveal_type(np.cumsum(b)) # E: numpy.ndarray -reveal_type(np.cumsum(c)) # E: numpy.ndarray -reveal_type(np.cumsum(A)) # E: numpy.ndarray -reveal_type(np.cumsum(B)) # E: numpy.ndarray +reveal_type(np.cumsum(a)) # E: numpy.ndarray[Any, Any] +reveal_type(np.cumsum(b)) # E: numpy.ndarray[Any, Any] +reveal_type(np.cumsum(c)) # E: numpy.ndarray[Any, Any] +reveal_type(np.cumsum(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.cumsum(B)) # E: numpy.ndarray[Any, Any] reveal_type(np.ptp(a)) # E: numpy.number[Any] reveal_type(np.ptp(b)) # E: numpy.floating[numpy.typing._32Bit] reveal_type(np.ptp(c)) # E: numpy.number[Any] reveal_type(np.ptp(A)) # E: numpy.number[Any] reveal_type(np.ptp(B)) # E: numpy.number[Any] -reveal_type(np.ptp(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.ptp(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.ptp(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.ptp(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(np.ptp(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.ptp(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.ptp(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.ptp(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(np.amax(a)) # E: numpy.number[Any] reveal_type(np.amax(b)) # E: numpy.floating[numpy.typing._32Bit] reveal_type(np.amax(c)) # E: numpy.number[Any] reveal_type(np.amax(A)) # E: numpy.number[Any] reveal_type(np.amax(B)) # E: numpy.number[Any] -reveal_type(np.amax(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.amax(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.amax(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.amax(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(np.amax(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.amax(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.amax(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.amax(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(np.amin(a)) # E: numpy.number[Any] reveal_type(np.amin(b)) # E: numpy.floating[numpy.typing._32Bit] reveal_type(np.amin(c)) # E: numpy.number[Any] reveal_type(np.amin(A)) # E: numpy.number[Any] reveal_type(np.amin(B)) # E: numpy.number[Any] -reveal_type(np.amin(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.amin(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.amin(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.amin(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(np.amin(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.amin(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.amin(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.amin(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(np.prod(a)) # E: numpy.number[Any] reveal_type(np.prod(b)) # E: numpy.floating[numpy.typing._32Bit] reveal_type(np.prod(c)) # E: numpy.number[Any] reveal_type(np.prod(A)) # E: numpy.number[Any] reveal_type(np.prod(B)) # E: numpy.number[Any] -reveal_type(np.prod(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.prod(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.prod(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.prod(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.prod(b, out=d)) # E: numpy.ndarray -reveal_type(np.prod(B, out=d)) # E: numpy.ndarray - -reveal_type(np.cumprod(a)) # E: numpy.ndarray -reveal_type(np.cumprod(b)) # E: numpy.ndarray -reveal_type(np.cumprod(c)) # E: numpy.ndarray -reveal_type(np.cumprod(A)) # E: numpy.ndarray -reveal_type(np.cumprod(B)) # E: numpy.ndarray +reveal_type(np.prod(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.prod(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.prod(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.prod(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.prod(b, out=d)) # E: numpy.ndarray[Any, Any] +reveal_type(np.prod(B, out=d)) # E: numpy.ndarray[Any, Any] + +reveal_type(np.cumprod(a)) # E: numpy.ndarray[Any, Any] +reveal_type(np.cumprod(b)) # E: numpy.ndarray[Any, Any] +reveal_type(np.cumprod(c)) # E: numpy.ndarray[Any, Any] +reveal_type(np.cumprod(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.cumprod(B)) # E: numpy.ndarray[Any, Any] reveal_type(np.ndim(a)) # E: int reveal_type(np.ndim(b)) # E: int @@ -238,41 +238,41 @@ reveal_type(np.size(B)) # E: int reveal_type(np.around(a)) # E: numpy.number[Any] reveal_type(np.around(b)) # E: numpy.floating[numpy.typing._32Bit] reveal_type(np.around(c)) # E: numpy.number[Any] -reveal_type(np.around(A)) # E: numpy.ndarray -reveal_type(np.around(B)) # E: numpy.ndarray +reveal_type(np.around(A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.around(B)) # E: numpy.ndarray[Any, Any] reveal_type(np.mean(a)) # E: numpy.number[Any] reveal_type(np.mean(b)) # E: numpy.number[Any] reveal_type(np.mean(c)) # E: numpy.number[Any] reveal_type(np.mean(A)) # E: numpy.number[Any] reveal_type(np.mean(B)) # E: numpy.number[Any] -reveal_type(np.mean(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.mean(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.mean(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.mean(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.mean(b, out=d)) # E: numpy.ndarray -reveal_type(np.mean(B, out=d)) # E: numpy.ndarray +reveal_type(np.mean(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.mean(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.mean(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.mean(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.mean(b, out=d)) # E: numpy.ndarray[Any, Any] +reveal_type(np.mean(B, out=d)) # E: numpy.ndarray[Any, Any] reveal_type(np.std(a)) # E: numpy.number[Any] reveal_type(np.std(b)) # E: numpy.number[Any] reveal_type(np.std(c)) # E: numpy.number[Any] reveal_type(np.std(A)) # E: numpy.number[Any] reveal_type(np.std(B)) # E: numpy.number[Any] -reveal_type(np.std(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.std(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.std(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.std(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.std(b, out=d)) # E: numpy.ndarray -reveal_type(np.std(B, out=d)) # E: numpy.ndarray +reveal_type(np.std(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.std(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.std(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.std(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.std(b, out=d)) # E: numpy.ndarray[Any, Any] +reveal_type(np.std(B, out=d)) # E: numpy.ndarray[Any, Any] reveal_type(np.var(a)) # E: numpy.number[Any] reveal_type(np.var(b)) # E: numpy.number[Any] reveal_type(np.var(c)) # E: numpy.number[Any] reveal_type(np.var(A)) # E: numpy.number[Any] reveal_type(np.var(B)) # E: numpy.number[Any] -reveal_type(np.var(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.var(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.var(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.var(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(np.var(b, out=d)) # E: numpy.ndarray -reveal_type(np.var(B, out=d)) # E: numpy.ndarray +reveal_type(np.var(A, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.var(B, axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.var(A, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.var(B, keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(np.var(b, out=d)) # E: numpy.ndarray[Any, Any] +reveal_type(np.var(B, out=d)) # E: numpy.ndarray[Any, Any] diff --git a/numpy/typing/tests/data/reveal/ndarray_misc.py b/numpy/typing/tests/data/reveal/ndarray_misc.py index 826c8aaa6..3e640b3ba 100644 --- a/numpy/typing/tests/data/reveal/ndarray_misc.py +++ b/numpy/typing/tests/data/reveal/ndarray_misc.py @@ -16,135 +16,135 @@ B: SubClass reveal_type(f8.all()) # E: numpy.bool_ reveal_type(A.all()) # E: numpy.bool_ -reveal_type(A.all(axis=0)) # E: Union[numpy.bool_, numpy.ndarray] -reveal_type(A.all(keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray] +reveal_type(A.all(axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] +reveal_type(A.all(keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] reveal_type(A.all(out=B)) # E: SubClass reveal_type(f8.any()) # E: numpy.bool_ reveal_type(A.any()) # E: numpy.bool_ -reveal_type(A.any(axis=0)) # E: Union[numpy.bool_, numpy.ndarray] -reveal_type(A.any(keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray] +reveal_type(A.any(axis=0)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] +reveal_type(A.any(keepdims=True)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] reveal_type(A.any(out=B)) # E: SubClass reveal_type(f8.argmax()) # E: numpy.signedinteger[Any] reveal_type(A.argmax()) # E: numpy.signedinteger[Any] -reveal_type(A.argmax(axis=0)) # E: Union[numpy.signedinteger[Any], numpy.ndarray] +reveal_type(A.argmax(axis=0)) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, Any]] reveal_type(A.argmax(out=B)) # E: SubClass reveal_type(f8.argmin()) # E: numpy.signedinteger[Any] reveal_type(A.argmin()) # E: numpy.signedinteger[Any] -reveal_type(A.argmin(axis=0)) # E: Union[numpy.signedinteger[Any], numpy.ndarray] +reveal_type(A.argmin(axis=0)) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, Any]] reveal_type(A.argmin(out=B)) # E: SubClass -reveal_type(f8.argsort()) # E: numpy.ndarray -reveal_type(A.argsort()) # E: numpy.ndarray +reveal_type(f8.argsort()) # E: numpy.ndarray[Any, Any] +reveal_type(A.argsort()) # E: numpy.ndarray[Any, Any] -reveal_type(f8.astype(np.int64).choose([()])) # E: numpy.ndarray -reveal_type(A.choose([0])) # E: numpy.ndarray +reveal_type(f8.astype(np.int64).choose([()])) # E: numpy.ndarray[Any, Any] +reveal_type(A.choose([0])) # E: numpy.ndarray[Any, Any] reveal_type(A.choose([0], out=B)) # E: SubClass -reveal_type(f8.clip(1)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(A.clip(1)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(A.clip(None, 1)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(f8.clip(1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(A.clip(1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(A.clip(None, 1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(A.clip(1, out=B)) # E: SubClass reveal_type(A.clip(None, 1, out=B)) # E: SubClass -reveal_type(f8.compress([0])) # E: numpy.ndarray -reveal_type(A.compress([0])) # E: numpy.ndarray +reveal_type(f8.compress([0])) # E: numpy.ndarray[Any, Any] +reveal_type(A.compress([0])) # E: numpy.ndarray[Any, Any] reveal_type(A.compress([0], out=B)) # E: SubClass reveal_type(f8.conj()) # E: numpy.floating[numpy.typing._64Bit] -reveal_type(A.conj()) # E: numpy.ndarray +reveal_type(A.conj()) # E: numpy.ndarray[Any, Any] reveal_type(B.conj()) # E: SubClass reveal_type(f8.conjugate()) # E: numpy.floating[numpy.typing._64Bit] -reveal_type(A.conjugate()) # E: numpy.ndarray +reveal_type(A.conjugate()) # E: numpy.ndarray[Any, Any] reveal_type(B.conjugate()) # E: SubClass -reveal_type(f8.cumprod()) # E: numpy.ndarray -reveal_type(A.cumprod()) # E: numpy.ndarray +reveal_type(f8.cumprod()) # E: numpy.ndarray[Any, Any] +reveal_type(A.cumprod()) # E: numpy.ndarray[Any, Any] reveal_type(A.cumprod(out=B)) # E: SubClass -reveal_type(f8.cumsum()) # E: numpy.ndarray -reveal_type(A.cumsum()) # E: numpy.ndarray +reveal_type(f8.cumsum()) # E: numpy.ndarray[Any, Any] +reveal_type(A.cumsum()) # E: numpy.ndarray[Any, Any] reveal_type(A.cumsum(out=B)) # E: SubClass reveal_type(f8.max()) # E: numpy.number[Any] reveal_type(A.max()) # E: numpy.number[Any] -reveal_type(A.max(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(A.max(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(A.max(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(A.max(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(A.max(out=B)) # E: SubClass reveal_type(f8.mean()) # E: numpy.number[Any] reveal_type(A.mean()) # E: numpy.number[Any] -reveal_type(A.mean(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(A.mean(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(A.mean(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(A.mean(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(A.mean(out=B)) # E: SubClass reveal_type(f8.min()) # E: numpy.number[Any] reveal_type(A.min()) # E: numpy.number[Any] -reveal_type(A.min(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(A.min(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(A.min(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(A.min(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(A.min(out=B)) # E: SubClass reveal_type(f8.newbyteorder()) # E: numpy.floating[numpy.typing._64Bit] -reveal_type(A.newbyteorder()) # E: numpy.ndarray +reveal_type(A.newbyteorder()) # E: numpy.ndarray[Any, Any] reveal_type(B.newbyteorder('|')) # E: SubClass reveal_type(f8.prod()) # E: numpy.number[Any] reveal_type(A.prod()) # E: numpy.number[Any] -reveal_type(A.prod(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(A.prod(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(A.prod(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(A.prod(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(A.prod(out=B)) # E: SubClass reveal_type(f8.ptp()) # E: numpy.number[Any] reveal_type(A.ptp()) # E: numpy.number[Any] -reveal_type(A.ptp(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(A.ptp(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(A.ptp(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(A.ptp(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(A.ptp(out=B)) # E: SubClass reveal_type(f8.round()) # E: numpy.floating[numpy.typing._64Bit] -reveal_type(A.round()) # E: numpy.ndarray +reveal_type(A.round()) # E: numpy.ndarray[Any, Any] reveal_type(A.round(out=B)) # E: SubClass -reveal_type(f8.repeat(1)) # E: numpy.ndarray -reveal_type(A.repeat(1)) # E: numpy.ndarray -reveal_type(B.repeat(1)) # E: numpy.ndarray +reveal_type(f8.repeat(1)) # E: numpy.ndarray[Any, Any] +reveal_type(A.repeat(1)) # E: numpy.ndarray[Any, Any] +reveal_type(B.repeat(1)) # E: numpy.ndarray[Any, Any] reveal_type(f8.std()) # E: numpy.number[Any] reveal_type(A.std()) # E: numpy.number[Any] -reveal_type(A.std(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(A.std(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(A.std(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(A.std(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(A.std(out=B)) # E: SubClass reveal_type(f8.sum()) # E: numpy.number[Any] reveal_type(A.sum()) # E: numpy.number[Any] -reveal_type(A.sum(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(A.sum(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(A.sum(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(A.sum(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(A.sum(out=B)) # E: SubClass reveal_type(f8.take(0)) # E: numpy.generic reveal_type(A.take(0)) # E: numpy.generic -reveal_type(A.take([0])) # E: numpy.ndarray +reveal_type(A.take([0])) # E: numpy.ndarray[Any, Any] reveal_type(A.take(0, out=B)) # E: SubClass reveal_type(A.take([0], out=B)) # E: SubClass reveal_type(f8.var()) # E: numpy.number[Any] reveal_type(A.var()) # E: numpy.number[Any] -reveal_type(A.var(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray] -reveal_type(A.var(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(A.var(axis=0)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] +reveal_type(A.var(keepdims=True)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(A.var(out=B)) # E: SubClass -reveal_type(A.argpartition([0])) # E: numpy.ndarray +reveal_type(A.argpartition([0])) # E: numpy.ndarray[Any, Any] -reveal_type(A.diagonal()) # E: numpy.ndarray +reveal_type(A.diagonal()) # E: numpy.ndarray[Any, Any] -reveal_type(A.dot(1)) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(A.dot(1)) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(A.dot(1, out=B)) # E: SubClass -reveal_type(A.nonzero()) # E: tuple[numpy.ndarray] +reveal_type(A.nonzero()) # E: tuple[numpy.ndarray[Any, Any]] -reveal_type(A.searchsorted([1])) # E: numpy.ndarray +reveal_type(A.searchsorted([1])) # E: numpy.ndarray[Any, Any] -reveal_type(A.trace()) # E: Union[numpy.number[Any], numpy.ndarray] +reveal_type(A.trace()) # E: Union[numpy.number[Any], numpy.ndarray[Any, Any]] reveal_type(A.trace(out=B)) # E: SubClass diff --git a/numpy/typing/tests/data/reveal/numeric.py b/numpy/typing/tests/data/reveal/numeric.py index 5cbfa4ac7..78e5c1d61 100644 --- a/numpy/typing/tests/data/reveal/numeric.py +++ b/numpy/typing/tests/data/reveal/numeric.py @@ -20,53 +20,53 @@ C: SubClass reveal_type(np.count_nonzero(i8)) # E: int reveal_type(np.count_nonzero(A)) # E: int reveal_type(np.count_nonzero(B)) # E: int -reveal_type(np.count_nonzero(A, keepdims=True)) # E: Union[numpy.signedinteger[Any], numpy.ndarray] -reveal_type(np.count_nonzero(A, axis=0)) # E: Union[numpy.signedinteger[Any], numpy.ndarray] +reveal_type(np.count_nonzero(A, keepdims=True)) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, Any]] +reveal_type(np.count_nonzero(A, axis=0)) # E: Union[numpy.signedinteger[Any], numpy.ndarray[Any, Any]] reveal_type(np.isfortran(i8)) # E: bool reveal_type(np.isfortran(A)) # E: bool -reveal_type(np.argwhere(i8)) # E: numpy.ndarray -reveal_type(np.argwhere(A)) # E: numpy.ndarray +reveal_type(np.argwhere(i8)) # E: numpy.ndarray[Any, Any] +reveal_type(np.argwhere(A)) # E: numpy.ndarray[Any, Any] -reveal_type(np.flatnonzero(i8)) # E: numpy.ndarray -reveal_type(np.flatnonzero(A)) # E: numpy.ndarray +reveal_type(np.flatnonzero(i8)) # E: numpy.ndarray[Any, Any] +reveal_type(np.flatnonzero(A)) # E: numpy.ndarray[Any, Any] -reveal_type(np.correlate(B, A, mode="valid")) # E: numpy.ndarray -reveal_type(np.correlate(A, A, mode="same")) # E: numpy.ndarray +reveal_type(np.correlate(B, A, mode="valid")) # E: numpy.ndarray[Any, Any] +reveal_type(np.correlate(A, A, mode="same")) # E: numpy.ndarray[Any, Any] -reveal_type(np.convolve(B, A, mode="valid")) # E: numpy.ndarray -reveal_type(np.convolve(A, A, mode="same")) # E: numpy.ndarray +reveal_type(np.convolve(B, A, mode="valid")) # E: numpy.ndarray[Any, Any] +reveal_type(np.convolve(A, A, mode="same")) # E: numpy.ndarray[Any, Any] -reveal_type(np.outer(i8, A)) # E: numpy.ndarray -reveal_type(np.outer(B, A)) # E: numpy.ndarray -reveal_type(np.outer(A, A)) # E: numpy.ndarray +reveal_type(np.outer(i8, A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.outer(B, A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.outer(A, A)) # E: numpy.ndarray[Any, Any] reveal_type(np.outer(A, A, out=C)) # E: SubClass -reveal_type(np.tensordot(B, A)) # E: numpy.ndarray -reveal_type(np.tensordot(A, A)) # E: numpy.ndarray -reveal_type(np.tensordot(A, A, axes=0)) # E: numpy.ndarray -reveal_type(np.tensordot(A, A, axes=(0, 1))) # E: numpy.ndarray +reveal_type(np.tensordot(B, A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.tensordot(A, A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.tensordot(A, A, axes=0)) # E: numpy.ndarray[Any, Any] +reveal_type(np.tensordot(A, A, axes=(0, 1))) # E: numpy.ndarray[Any, Any] reveal_type(np.isscalar(i8)) # E: bool reveal_type(np.isscalar(A)) # E: bool reveal_type(np.isscalar(B)) # E: bool -reveal_type(np.roll(A, 1)) # E: numpy.ndarray -reveal_type(np.roll(A, (1, 2))) # E: numpy.ndarray -reveal_type(np.roll(B, 1)) # E: numpy.ndarray +reveal_type(np.roll(A, 1)) # E: numpy.ndarray[Any, Any] +reveal_type(np.roll(A, (1, 2))) # E: numpy.ndarray[Any, Any] +reveal_type(np.roll(B, 1)) # E: numpy.ndarray[Any, Any] -reveal_type(np.rollaxis(A, 0, 1)) # E: numpy.ndarray +reveal_type(np.rollaxis(A, 0, 1)) # E: numpy.ndarray[Any, Any] -reveal_type(np.moveaxis(A, 0, 1)) # E: numpy.ndarray -reveal_type(np.moveaxis(A, (0, 1), (1, 2))) # E: numpy.ndarray +reveal_type(np.moveaxis(A, 0, 1)) # E: numpy.ndarray[Any, Any] +reveal_type(np.moveaxis(A, (0, 1), (1, 2))) # E: numpy.ndarray[Any, Any] -reveal_type(np.cross(B, A)) # E: numpy.ndarray -reveal_type(np.cross(A, A)) # E: numpy.ndarray +reveal_type(np.cross(B, A)) # E: numpy.ndarray[Any, Any] +reveal_type(np.cross(A, A)) # E: numpy.ndarray[Any, Any] -reveal_type(np.indices([0, 1, 2])) # E: numpy.ndarray -reveal_type(np.indices([0, 1, 2], sparse=False)) # E: numpy.ndarray -reveal_type(np.indices([0, 1, 2], sparse=True)) # E: tuple[numpy.ndarray] +reveal_type(np.indices([0, 1, 2])) # E: numpy.ndarray[Any, Any] +reveal_type(np.indices([0, 1, 2], sparse=False)) # E: numpy.ndarray[Any, Any] +reveal_type(np.indices([0, 1, 2], sparse=True)) # E: tuple[numpy.ndarray[Any, Any]] reveal_type(np.binary_repr(1)) # E: str @@ -76,9 +76,9 @@ reveal_type(np.allclose(i8, A)) # E: bool reveal_type(np.allclose(B, A)) # E: bool reveal_type(np.allclose(A, A)) # E: bool -reveal_type(np.isclose(i8, A)) # E: Union[numpy.bool_, numpy.ndarray] -reveal_type(np.isclose(B, A)) # E: Union[numpy.bool_, numpy.ndarray] -reveal_type(np.isclose(A, A)) # E: Union[numpy.bool_, numpy.ndarray] +reveal_type(np.isclose(i8, A)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] +reveal_type(np.isclose(B, A)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] +reveal_type(np.isclose(A, A)) # E: Union[numpy.bool_, numpy.ndarray[Any, Any]] reveal_type(np.array_equal(i8, A)) # E: bool reveal_type(np.array_equal(B, A)) # E: bool |