summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--numpy/build_utils/apple_accelerate.py21
-rw-r--r--numpy/build_utils/src/apple_sgemv_fix.c229
-rw-r--r--numpy/core/setup.py3
-rw-r--r--numpy/core/tests/test_multiarray.py67
4 files changed, 320 insertions, 0 deletions
diff --git a/numpy/build_utils/apple_accelerate.py b/numpy/build_utils/apple_accelerate.py
new file mode 100644
index 000000000..d7351f4c5
--- /dev/null
+++ b/numpy/build_utils/apple_accelerate.py
@@ -0,0 +1,21 @@
+import os
+import sys
+import re
+
+__all__ = ['uses_accelerate_framework', 'get_sgemv_fix']
+
+def uses_accelerate_framework(info):
+ """ Returns True if Accelerate framework is used for BLAS/LAPACK """
+ if sys.platform != "darwin":
+ return False
+ r_accelerate = re.compile("Accelerate")
+ extra_link_args = info.get('extra_link_args', '')
+ for arg in extra_link_args:
+ if r_accelerate.search(arg):
+ return True
+ return False
+
+def get_sgemv_fix():
+ """ Returns source file needed to correct SGEMV """
+ path = os.path.abspath(os.path.dirname(__file__))
+ return [os.path.join(path, 'src', 'apple_sgemv_fix.c')]
diff --git a/numpy/build_utils/src/apple_sgemv_fix.c b/numpy/build_utils/src/apple_sgemv_fix.c
new file mode 100644
index 000000000..558343477
--- /dev/null
+++ b/numpy/build_utils/src/apple_sgemv_fix.c
@@ -0,0 +1,229 @@
+/* This is a collection of ugly hacks to circumvent a bug in
+ * Apple Accelerate framework's SGEMV subroutine.
+ *
+ * See: https://github.com/numpy/numpy/issues/4007
+ *
+ * SGEMV in Accelerate framework will segfault on MacOS X version 10.9
+ * (aka Mavericks) if arrays are not aligned to 32 byte boundaries
+ * and the CPU supports AVX instructions. This can produce segfaults
+ * in np.dot.
+ *
+ * This patch overshadows the symbols cblas_sgemv, sgemv_ and sgemv
+ * exported by Accelerate to produce the correct behavior. The MacOS X
+ * version and CPU specs are checked on module import. If Mavericks and
+ * AVX are detected the call to SGEMV is emulated with a call to SGEMM
+ * if the arrays are not 32 byte aligned. If the exported symbols cannot
+ * be overshadowed on module import, a fatal error is produced and the
+ * process aborts. All the fixes are in a self-contained C file
+ * and do not alter the multiarray C code. The patch is not applied
+ * unless NumPy is configured to link with Apple's Accelerate
+ * framework.
+ *
+ */
+
+#define NPY_NO_DEPRECATED_API NPY_API_VERSION
+#include "Python.h"
+#include "numpy/arrayobject.h"
+
+#include <string.h>
+#include <dlfcn.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+/* ----------------------------------------------------------------- */
+/* Original cblas_sgemv */
+
+#define VECLIB_FILE "/System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/vecLib"
+
+enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};
+enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};
+extern void cblas_xerbla(int info, const char *rout, const char *form, ...);
+
+typedef void cblas_sgemv_t(const enum CBLAS_ORDER order,
+ const enum CBLAS_TRANSPOSE TransA, const int M, const int N,
+ const float alpha, const float *A, const int lda,
+ const float *X, const int incX,
+ const float beta, float *Y, const int incY);
+
+typedef void cblas_sgemm_t(const enum CBLAS_ORDER order,
+ const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB,
+ const int M, const int N, const int K,
+ const float alpha, const float *A, const int lda,
+ const float *B, const int ldb,
+ const float beta, float *C, const int incC);
+
+typedef void fortran_sgemv_t( const char* trans, const int* m, const int* n,
+ const float* alpha, const float* A, const int* ldA,
+ const float* X, const int* incX,
+ const float* beta, float* Y, const int* incY );
+
+static void *veclib = NULL;
+static cblas_sgemv_t *accelerate_cblas_sgemv = NULL;
+static cblas_sgemm_t *accelerate_cblas_sgemm = NULL;
+static fortran_sgemv_t *accelerate_sgemv = NULL;
+static int AVX_and_10_9 = 0;
+
+/* Dynamic check for AVX support
+ * __builtin_cpu_supports("avx") is available in gcc 4.8,
+ * but clang and icc do not currently support it. */
+#define cpu_supports_avx()\
+(system("sysctl -n machdep.cpu.features | grep -q AVX") == 0)
+
+/* Check if we are using MacOS X version 10.9 */
+#define using_mavericks()\
+(system("sw_vers -productVersion | grep -q 10\\.9\\.") == 0)
+
+__attribute__((destructor))
+static void unloadlib(void)
+{
+ if (veclib) dlclose(veclib);
+}
+
+__attribute__((constructor))
+static void loadlib()
+/* automatically executed on module import */
+{
+ char errormsg[1024];
+ int AVX, MAVERICKS;
+ memset((void*)errormsg, 0, sizeof(errormsg));
+ /* check if the CPU supports AVX */
+ AVX = cpu_supports_avx();
+ /* check if the OS is MacOS X Mavericks */
+ MAVERICKS = using_mavericks();
+ /* we need the workaround when the CPU supports
+ * AVX and the OS version is Mavericks */
+ AVX_and_10_9 = AVX && MAVERICKS;
+ /* load vecLib */
+ veclib = dlopen(VECLIB_FILE, RTLD_LOCAL | RTLD_FIRST);
+ if (!veclib) {
+ veclib = NULL;
+ sprintf(errormsg,"Failed to open vecLib from location '%s'.", VECLIB_FILE);
+ Py_FatalError(errormsg); /* calls abort() and dumps core */
+ }
+ /* resolve Fortran SGEMV from Accelerate */
+ accelerate_sgemv = (fortran_sgemv_t*) dlsym(veclib, "sgemv_");
+ if (!accelerate_sgemv) {
+ unloadlib();
+ sprintf(errormsg,"Failed to resolve symbol 'sgemv_'.");
+ Py_FatalError(errormsg);
+ }
+ /* resolve cblas_sgemv from Accelerate */
+ accelerate_cblas_sgemv = (cblas_sgemv_t*) dlsym(veclib, "cblas_sgemv");
+ if (!accelerate_cblas_sgemv) {
+ unloadlib();
+ sprintf(errormsg,"Failed to resolve symbol 'cblas_sgemv'.");
+ Py_FatalError(errormsg);
+ }
+ /* resolve cblas_sgemm from Accelerate */
+ accelerate_cblas_sgemm = (cblas_sgemm_t*) dlsym(veclib, "cblas_sgemm");
+ if (!accelerate_cblas_sgemm) {
+ unloadlib();
+ sprintf(errormsg,"Failed to resolve symbol 'cblas_sgemm'.");
+ Py_FatalError(errormsg);
+ }
+}
+
+/* ----------------------------------------------------------------- */
+/* Fortran SGEMV override */
+
+void sgemv_( const char* trans, const int* m, const int* n,
+ const float* alpha, const float* A, const int* ldA,
+ const float* X, const int* incX,
+ const float* beta, float* Y, const int* incY )
+{
+ /* It is safe to use the original SGEMV if we are not using AVX on Mavericks
+ * or the input arrays A, X and Y are all aligned on 32 byte boundaries. */
+ #define BADARRAY(x) (((npy_intp)(void*)x) % 32)
+ const int use_sgemm = AVX_and_10_9 && (BADARRAY(A) || BADARRAY(X) || BADARRAY(Y));
+ if (!use_sgemm) {
+ accelerate_sgemv(trans,m,n,alpha,A,ldA,X,incX,beta,Y,incY);
+ return;
+ }
+
+ /* Arrays are misaligned, the CPU supports AVX, and we are running
+ * Mavericks.
+ *
+ * Emulation of SGEMV with SGEMM:
+ *
+ * SGEMV allows vectors to be strided. SGEMM requires all arrays to be
+ * contiguous along the leading dimension. To emulate striding in SGEMV
+ * with the leading dimension arguments in SGEMM we compute
+ *
+ * Y = alpha * op(A) @ X + beta * Y
+ *
+ * as
+ *
+ * Y.T = alpha * X.T @ op(A).T + beta * Y.T
+ *
+ * Because Fortran uses column major order and X.T and Y.T are row vectors,
+ * the leading dimensions of X.T and Y.T in SGEMM become equal to the
+ * strides of the the column vectors X and Y in SGEMV. */
+
+ switch (*trans) {
+ case 'T':
+ case 't':
+ case 'C':
+ case 'c':
+ accelerate_cblas_sgemm( CblasColMajor, CblasNoTrans, CblasNoTrans,
+ 1, *n, *m, *alpha, X, *incX, A, *ldA, *beta, Y, *incY );
+ break;
+ case 'N':
+ case 'n':
+ accelerate_cblas_sgemm( CblasColMajor, CblasNoTrans, CblasTrans,
+ 1, *m, *n, *alpha, X, *incX, A, *ldA, *beta, Y, *incY );
+ break;
+ default:
+ cblas_xerbla(1, "SGEMV", "Illegal transpose setting: %c\n", *trans);
+ }
+}
+
+/* ----------------------------------------------------------------- */
+/* Override for an alias symbol for sgemv_ in Accelerate */
+
+void sgemv (char *trans,
+ const int *m, const int *n,
+ const float *alpha,
+ const float *A, const int *lda,
+ const float *B, const int *incB,
+ const float *beta,
+ float *C, const int *incC)
+{
+ sgemv_(trans,m,n,alpha,A,lda,B,incB,beta,C,incC);
+}
+
+/* ----------------------------------------------------------------- */
+/* cblas_sgemv override, based on Netlib CBLAS code */
+
+void cblas_sgemv(const enum CBLAS_ORDER order,
+ const enum CBLAS_TRANSPOSE TransA, const int M, const int N,
+ const float alpha, const float *A, const int lda,
+ const float *X, const int incX, const float beta,
+ float *Y, const int incY)
+{
+ char TA;
+ if (order == CblasColMajor)
+ {
+ if (TransA == CblasNoTrans) TA = 'N';
+ else if (TransA == CblasTrans) TA = 'T';
+ else if (TransA == CblasConjTrans) TA = 'C';
+ else
+ {
+ cblas_xerbla(2, "cblas_sgemv","Illegal TransA setting, %d\n", TransA);
+ }
+ sgemv_(&TA, &M, &N, &alpha, A, &lda, X, &incX, &beta, Y, &incY);
+ }
+ else if (order == CblasRowMajor)
+ {
+ if (TransA == CblasNoTrans) TA = 'T';
+ else if (TransA == CblasTrans) TA = 'N';
+ else if (TransA == CblasConjTrans) TA = 'N';
+ else
+ {
+ cblas_xerbla(2, "cblas_sgemv", "Illegal TransA setting, %d\n", TransA);
+ return;
+ }
+ sgemv_(&TA, &N, &M, &alpha, A, &lda, X, &incX, &beta, Y, &incY);
+ }
+ else
+ cblas_xerbla(1, "cblas_sgemv", "Illegal Order setting, %d\n", order);
+}
diff --git a/numpy/core/setup.py b/numpy/core/setup.py
index 11b443cf8..7a82f1e35 100644
--- a/numpy/core/setup.py
+++ b/numpy/core/setup.py
@@ -12,6 +12,7 @@ from os.path import join
from numpy.distutils import log
from distutils.dep_util import newer
from distutils.sysconfig import get_config_var
+from numpy.build_utils.apple_accelerate import uses_accelerate_framework, get_sgemv_fix
from setup_common import *
@@ -838,6 +839,8 @@ def configuration(parent_package='',top_path=None):
multiarray_src.extend([join('src', 'multiarray', 'cblasfuncs.c'),
join('src', 'multiarray', 'python_xerbla.c'),
])
+ if uses_accelerate_framework(blas_info):
+ multiarray_src.extend(get_sgemv_fix())
else:
extra_info = {}
diff --git a/numpy/core/tests/test_multiarray.py b/numpy/core/tests/test_multiarray.py
index 314adf4d1..dfa7880f9 100644
--- a/numpy/core/tests/test_multiarray.py
+++ b/numpy/core/tests/test_multiarray.py
@@ -3885,6 +3885,73 @@ class TestDot(TestCase):
assert_raises(TypeError, np.dot, b, c)
assert_raises(TypeError, c.dot, b)
+ def test_accelerate_framework_sgemv_fix(self):
+ from itertools import product
+ if sys.platform != 'darwin':
+ return
+
+ def aligned_array(shape, align, dtype, order='C'):
+ d = dtype()
+ N = np.prod(shape)
+ tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8)
+ address = tmp.__array_interface__["data"][0]
+ for offset in range(align):
+ if (address + offset) % align == 0:
+ break
+ tmp = tmp[offset:offset+N*d.nbytes].view(dtype=dtype)
+ return tmp.reshape(shape, order=order)
+
+ def as_aligned(arr, align, dtype, order='C'):
+ aligned = aligned_array(arr.shape, align, dtype, order)
+ aligned[:] = arr[:]
+ return aligned
+
+ def assert_dot_close(A, X, desired):
+ assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7)
+
+ m = aligned_array(100, 15, np.float32)
+ s = aligned_array((100, 100), 15, np.float32)
+ np.dot(s, m) # this will always segfault if the bug is present
+
+ testdata = product((15,32), (10000,), (200,89), ('C','F'))
+ for align, m, n, a_order in testdata:
+ # Calculation in double precision
+ A_d = np.random.rand(m, n)
+ X_d = np.random.rand(n)
+ desired = np.dot(A_d, X_d)
+ # Calculation with aligned single precision
+ A_f = as_aligned(A_d, align, np.float32, order=a_order)
+ X_f = as_aligned(X_d, align, np.float32)
+ assert_dot_close(A_f, X_f, desired)
+ # Strided A rows
+ A_d_2 = A_d[::2]
+ desired = np.dot(A_d_2, X_d)
+ A_f_2 = A_f[::2]
+ assert_dot_close(A_f_2, X_f, desired)
+ # Strided A columns, strided X vector
+ A_d_22 = A_d_2[:, ::2]
+ X_d_2 = X_d[::2]
+ desired = np.dot(A_d_22, X_d_2)
+ A_f_22 = A_f_2[:, ::2]
+ X_f_2 = X_f[::2]
+ assert_dot_close(A_f_22, X_f_2, desired)
+ # Check the strides are as expected
+ if a_order == 'F':
+ assert_equal(A_f_22.strides, (8, 8 * m))
+ else:
+ assert_equal(A_f_22.strides, (8 * n, 8))
+ assert_equal(X_f_2.strides, (8,))
+ # Strides in A rows + cols only
+ X_f_2c = as_aligned(X_f_2, align, np.float32)
+ assert_dot_close(A_f_22, X_f_2c, desired)
+ # Strides just in A cols
+ A_d_12 = A_d[:, ::2]
+ desired = np.dot(A_d_12, X_d_2)
+ A_f_12 = A_f[:, ::2]
+ assert_dot_close(A_f_12, X_f_2c, desired)
+ # Strides in A cols and X
+ assert_dot_close(A_f_12, X_f_2, desired)
+
class TestInner(TestCase):