summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--numpy/ma/tests/test_core.py392
-rw-r--r--numpy/ma/tests/test_deprecations.py6
-rw-r--r--numpy/ma/tests/test_extras.py67
-rw-r--r--numpy/ma/tests/test_mrecords.py77
-rw-r--r--numpy/ma/tests/test_old_ma.py514
-rw-r--r--numpy/ma/tests/test_regression.py9
-rw-r--r--numpy/ma/tests/test_subclassing.py112
7 files changed, 583 insertions, 594 deletions
diff --git a/numpy/ma/tests/test_core.py b/numpy/ma/tests/test_core.py
index c8bcb758d..06f4df000 100644
--- a/numpy/ma/tests/test_core.py
+++ b/numpy/ma/tests/test_core.py
@@ -20,7 +20,7 @@ import numpy.ma.core
import numpy.core.fromnumeric as fromnumeric
import numpy.core.umath as umath
from numpy.testing import (
- TestCase, run_module_suite, assert_raises, assert_warns, suppress_warnings
+ run_module_suite, assert_raises, assert_warns, suppress_warnings
)
from numpy import ndarray
from numpy.compat import asbytes, asbytes_nested
@@ -56,10 +56,10 @@ suppress_copy_mask_on_assignment.filter(
"setting an item on a masked array which has a shared mask will not copy")
-class TestMaskedArray(TestCase):
+class TestMaskedArray(object):
# Base test class for MaskedArrays.
- def setUp(self):
+ def setup(self):
# Base data definition.
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
@@ -94,14 +94,14 @@ class TestMaskedArray(TestCase):
x = masked_array(0, mask=False)
assert_equal(str(x), '0')
x = array(0, mask=1)
- self.assertTrue(x.filled().dtype is x._data.dtype)
+ assert_(x.filled().dtype is x._data.dtype)
def test_basic1d(self):
# Test of basic array creation and properties in 1 dimension.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
- self.assertTrue(not isMaskedArray(x))
- self.assertTrue(isMaskedArray(xm))
- self.assertTrue((xm - ym).filled(0).any())
+ assert_(not isMaskedArray(x))
+ assert_(isMaskedArray(xm))
+ assert_((xm - ym).filled(0).any())
fail_if_equal(xm.mask.astype(int), ym.mask.astype(int))
s = x.shape
assert_equal(np.shape(xm), s)
@@ -124,8 +124,8 @@ class TestMaskedArray(TestCase):
ym.shape = s
xf.shape = s
- self.assertTrue(not isMaskedArray(x))
- self.assertTrue(isMaskedArray(xm))
+ assert_(not isMaskedArray(x))
+ assert_(isMaskedArray(xm))
assert_equal(shape(xm), s)
assert_equal(xm.shape, s)
assert_equal(xm.size, reduce(lambda x, y:x * y, s))
@@ -218,7 +218,7 @@ class TestMaskedArray(TestCase):
x.mask = nomask
data = array((x, x[::-1]))
assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]])
- self.assertTrue(data.mask is nomask)
+ assert_(data.mask is nomask)
def test_creation_from_ndarray_with_padding(self):
x = np.array([('A', 0)], dtype={'names':['f0','f1'],
@@ -239,18 +239,18 @@ class TestMaskedArray(TestCase):
def test_asarray_default_order(self):
# See Issue #6646
m = np.eye(3).T
- self.assertFalse(m.flags.c_contiguous)
+ assert_(not m.flags.c_contiguous)
new_m = asarray(m)
- self.assertTrue(new_m.flags.c_contiguous)
+ assert_(new_m.flags.c_contiguous)
def test_asarray_enforce_order(self):
# See Issue #6646
m = np.eye(3).T
- self.assertFalse(m.flags.c_contiguous)
+ assert_(not m.flags.c_contiguous)
new_m = asarray(m, order='C')
- self.assertTrue(new_m.flags.c_contiguous)
+ assert_(new_m.flags.c_contiguous)
def test_fix_invalid(self):
# Checks fix_invalid.
@@ -264,8 +264,8 @@ class TestMaskedArray(TestCase):
# Test of masked element
x = arange(6)
x[1] = masked
- self.assertTrue(str(masked) == '--')
- self.assertTrue(x[1] is masked)
+ assert_(str(masked) == '--')
+ assert_(x[1] is masked)
assert_equal(filled(x[1], 0), 0)
def test_set_element_as_object(self):
@@ -274,12 +274,12 @@ class TestMaskedArray(TestCase):
x = (1, 2, 3, 4, 5)
a[0] = x
assert_equal(a[0], x)
- self.assertTrue(a[0] is x)
+ assert_(a[0] is x)
import datetime
dt = datetime.datetime.now()
a[0] = dt
- self.assertTrue(a[0] is dt)
+ assert_(a[0] is dt)
def test_indexing(self):
# Tests conversions and indexing
@@ -380,43 +380,43 @@ class TestMaskedArray(TestCase):
n = [0, 0, 1, 0, 0]
m = make_mask(n)
m2 = make_mask(m)
- self.assertTrue(m is m2)
+ assert_(m is m2)
m3 = make_mask(m, copy=1)
- self.assertTrue(m is not m3)
+ assert_(m is not m3)
x1 = np.arange(5)
y1 = array(x1, mask=m)
assert_equal(y1._data.__array_interface__, x1.__array_interface__)
- self.assertTrue(allequal(x1, y1.data))
+ assert_(allequal(x1, y1.data))
assert_equal(y1._mask.__array_interface__, m.__array_interface__)
y1a = array(y1)
- self.assertTrue(y1a._data.__array_interface__ ==
+ assert_(y1a._data.__array_interface__ ==
y1._data.__array_interface__)
- self.assertTrue(y1a.mask is y1.mask)
+ assert_(y1a.mask is y1.mask)
y2 = array(x1, mask=m3)
- self.assertTrue(y2._data.__array_interface__ == x1.__array_interface__)
- self.assertTrue(y2._mask.__array_interface__ == m3.__array_interface__)
- self.assertTrue(y2[2] is masked)
+ assert_(y2._data.__array_interface__ == x1.__array_interface__)
+ assert_(y2._mask.__array_interface__ == m3.__array_interface__)
+ assert_(y2[2] is masked)
y2[2] = 9
- self.assertTrue(y2[2] is not masked)
- self.assertTrue(y2._mask.__array_interface__ == m3.__array_interface__)
- self.assertTrue(allequal(y2.mask, 0))
+ assert_(y2[2] is not masked)
+ assert_(y2._mask.__array_interface__ == m3.__array_interface__)
+ assert_(allequal(y2.mask, 0))
y2a = array(x1, mask=m, copy=1)
- self.assertTrue(y2a._data.__array_interface__ != x1.__array_interface__)
- #self.assertTrue( y2a.mask is not m)
- self.assertTrue(y2a._mask.__array_interface__ != m.__array_interface__)
- self.assertTrue(y2a[2] is masked)
+ assert_(y2a._data.__array_interface__ != x1.__array_interface__)
+ #assert_( y2a.mask is not m)
+ assert_(y2a._mask.__array_interface__ != m.__array_interface__)
+ assert_(y2a[2] is masked)
y2a[2] = 9
- self.assertTrue(y2a[2] is not masked)
- #self.assertTrue( y2a.mask is not m)
- self.assertTrue(y2a._mask.__array_interface__ != m.__array_interface__)
- self.assertTrue(allequal(y2a.mask, 0))
+ assert_(y2a[2] is not masked)
+ #assert_( y2a.mask is not m)
+ assert_(y2a._mask.__array_interface__ != m.__array_interface__)
+ assert_(allequal(y2a.mask, 0))
y3 = array(x1 * 1.0, mask=m)
- self.assertTrue(filled(y3).dtype is (x1 * 1.0).dtype)
+ assert_(filled(y3).dtype is (x1 * 1.0).dtype)
x4 = arange(4)
x4[2] = masked
@@ -447,8 +447,8 @@ class TestMaskedArray(TestCase):
def test_copy_on_python_builtins(self):
# Tests copy works on python builtins (issue#8019)
- self.assertTrue(isMaskedArray(np.ma.copy([1,2,3])))
- self.assertTrue(isMaskedArray(np.ma.copy((1,2,3))))
+ assert_(isMaskedArray(np.ma.copy([1,2,3])))
+ assert_(isMaskedArray(np.ma.copy((1,2,3))))
def test_copy_immutable(self):
# Tests that the copy method is immutable, GitHub issue #5247
@@ -518,7 +518,7 @@ class TestMaskedArray(TestCase):
a_pickled = pickle.loads(a.dumps())
assert_equal(a_pickled._mask, a._mask)
assert_equal(a_pickled, a)
- self.assertTrue(isinstance(a_pickled._data, np.matrix))
+ assert_(isinstance(a_pickled._data, np.matrix))
def test_pickling_maskedconstant(self):
# Test pickling MaskedConstant
@@ -558,19 +558,19 @@ class TestMaskedArray(TestCase):
assert_equal(1.0, float(array(1)))
assert_equal(1, int(array([[[1]]])))
assert_equal(1.0, float(array([[1]])))
- self.assertRaises(TypeError, float, array([1, 1]))
+ assert_raises(TypeError, float, array([1, 1]))
with suppress_warnings() as sup:
sup.filter(UserWarning, 'Warning: converting a masked element')
assert_(np.isnan(float(array([1], mask=[1]))))
a = array([1, 2, 3], mask=[1, 0, 0])
- self.assertRaises(TypeError, lambda: float(a))
+ assert_raises(TypeError, lambda: float(a))
assert_equal(float(a[-1]), 3.)
- self.assertTrue(np.isnan(float(a[0])))
- self.assertRaises(TypeError, int, a)
+ assert_(np.isnan(float(a[0])))
+ assert_raises(TypeError, int, a)
assert_equal(int(a[-1]), 3)
- self.assertRaises(MAError, lambda:int(a[0]))
+ assert_raises(MAError, lambda:int(a[0]))
def test_oddfeatures_1(self):
# Test of other odd features
@@ -679,8 +679,8 @@ class TestMaskedArray(TestCase):
a = array(np.array([(0, 1, 2), (4, 5, 6)], order='F'),
mask=np.array([(0, 0, 1), (1, 0, 0)], order='F'),
order='F') # this is currently ignored
- self.assertTrue(a.flags['F_CONTIGUOUS'])
- self.assertTrue(a.filled(0).flags['F_CONTIGUOUS'])
+ assert_(a.flags['F_CONTIGUOUS'])
+ assert_(a.filled(0).flags['F_CONTIGUOUS'])
def test_optinfo_propagation(self):
# Checks that _optinfo dictionary isn't back-propagated
@@ -768,14 +768,14 @@ class TestMaskedArray(TestCase):
dtype=ndtype)
# w/o mask
f = a[0]
- self.assertTrue(isinstance(f, mvoid))
+ assert_(isinstance(f, mvoid))
assert_equal((f[0], f['a']), (1, 1))
assert_equal(f['b'], 2)
# w/ mask
f = a[1]
- self.assertTrue(isinstance(f, mvoid))
- self.assertTrue(f[0] is masked)
- self.assertTrue(f['a'] is masked)
+ assert_(isinstance(f, mvoid))
+ assert_(f[0] is masked)
+ assert_(f['a'] is masked)
assert_equal(f[1], 4)
# exotic dtype
@@ -862,10 +862,10 @@ class TestMaskedArray(TestCase):
assert_(mx2[0] == 0.)
-class TestMaskedArrayArithmetic(TestCase):
+class TestMaskedArrayArithmetic(object):
# Base test class for MaskedArrays.
- def setUp(self):
+ def setup(self):
# Base data definition.
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
@@ -882,7 +882,7 @@ class TestMaskedArrayArithmetic(TestCase):
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
- def tearDown(self):
+ def teardown(self):
np.seterr(**self.err_status)
def test_basic_arithmetic(self):
@@ -942,8 +942,8 @@ class TestMaskedArrayArithmetic(TestCase):
# Tests mixed arithmetics.
na = np.array([1])
ma = array([1])
- self.assertTrue(isinstance(na + ma, MaskedArray))
- self.assertTrue(isinstance(ma + na, MaskedArray))
+ assert_(isinstance(na + ma, MaskedArray))
+ assert_(isinstance(ma + na, MaskedArray))
def test_limits_arithmetic(self):
tiny = np.finfo(float).tiny
@@ -955,11 +955,11 @@ class TestMaskedArrayArithmetic(TestCase):
# Tests some scalar arithmetics on MaskedArrays.
# Masked singleton should remain masked no matter what
xm = array(0, mask=1)
- self.assertTrue((1 / array(0)).mask)
- self.assertTrue((1 + xm).mask)
- self.assertTrue((-xm).mask)
- self.assertTrue(maximum(xm, xm).mask)
- self.assertTrue(minimum(xm, xm).mask)
+ assert_((1 / array(0)).mask)
+ assert_((1 + xm).mask)
+ assert_((-xm).mask)
+ assert_(maximum(xm, xm).mask)
+ assert_(minimum(xm, xm).mask)
def test_masked_singleton_equality(self):
# Tests (in)equality on masked singleton
@@ -1031,7 +1031,7 @@ class TestMaskedArrayArithmetic(TestCase):
ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
res = count(ott)
- self.assertTrue(res.dtype.type is np.intp)
+ assert_(res.dtype.type is np.intp)
assert_equal(3, res)
ott = ott.reshape((2, 2))
@@ -1082,19 +1082,19 @@ class TestMaskedArrayArithmetic(TestCase):
def test_minimummaximum_func(self):
a = np.ones((2, 2))
aminimum = minimum(a, a)
- self.assertTrue(isinstance(aminimum, MaskedArray))
+ assert_(isinstance(aminimum, MaskedArray))
assert_equal(aminimum, np.minimum(a, a))
aminimum = minimum.outer(a, a)
- self.assertTrue(isinstance(aminimum, MaskedArray))
+ assert_(isinstance(aminimum, MaskedArray))
assert_equal(aminimum, np.minimum.outer(a, a))
amaximum = maximum(a, a)
- self.assertTrue(isinstance(amaximum, MaskedArray))
+ assert_(isinstance(amaximum, MaskedArray))
assert_equal(amaximum, np.maximum(a, a))
amaximum = maximum.outer(a, a)
- self.assertTrue(isinstance(amaximum, MaskedArray))
+ assert_(isinstance(amaximum, MaskedArray))
assert_equal(amaximum, np.maximum.outer(a, a))
def test_minmax_reduce(self):
@@ -1120,33 +1120,33 @@ class TestMaskedArrayArithmetic(TestCase):
pass
nout = np.empty((4,), dtype=float)
result = npfunc(xm, axis=0, out=nout)
- self.assertTrue(result is nout)
+ assert_(result is nout)
# Use the ma version
nout.fill(-999)
result = mafunc(xm, axis=0, out=nout)
- self.assertTrue(result is nout)
+ assert_(result is nout)
def test_minmax_methods(self):
# Additional tests on max/min
(_, _, _, _, _, xm, _, _, _, _) = self.d
xm.shape = (xm.size,)
assert_equal(xm.max(), 10)
- self.assertTrue(xm[0].max() is masked)
- self.assertTrue(xm[0].max(0) is masked)
- self.assertTrue(xm[0].max(-1) is masked)
+ assert_(xm[0].max() is masked)
+ assert_(xm[0].max(0) is masked)
+ assert_(xm[0].max(-1) is masked)
assert_equal(xm.min(), -10.)
- self.assertTrue(xm[0].min() is masked)
- self.assertTrue(xm[0].min(0) is masked)
- self.assertTrue(xm[0].min(-1) is masked)
+ assert_(xm[0].min() is masked)
+ assert_(xm[0].min(0) is masked)
+ assert_(xm[0].min(-1) is masked)
assert_equal(xm.ptp(), 20.)
- self.assertTrue(xm[0].ptp() is masked)
- self.assertTrue(xm[0].ptp(0) is masked)
- self.assertTrue(xm[0].ptp(-1) is masked)
+ assert_(xm[0].ptp() is masked)
+ assert_(xm[0].ptp(0) is masked)
+ assert_(xm[0].ptp(-1) is masked)
x = array([1, 2, 3], mask=True)
- self.assertTrue(x.min() is masked)
- self.assertTrue(x.max() is masked)
- self.assertTrue(x.ptp() is masked)
+ assert_(x.min() is masked)
+ assert_(x.max() is masked)
+ assert_(x.ptp() is masked)
def test_addsumprod(self):
# Tests add, sum, product.
@@ -1503,7 +1503,7 @@ class TestMaskedArrayArithmetic(TestCase):
assert_equal(a.mask, [0, 0, 0, 0, 1])
-class TestMaskedArrayAttributes(TestCase):
+class TestMaskedArrayAttributes(object):
def test_keepmask(self):
# Tests the keep mask flag
@@ -1531,8 +1531,8 @@ class TestMaskedArrayAttributes(TestCase):
assert_equal(xh._data, [0, 10, 2, 3, 4])
assert_equal(xs._data, [0, 10, 2, 3, 40])
assert_equal(xs.mask, [0, 0, 0, 1, 0])
- self.assertTrue(xh._hardmask)
- self.assertTrue(not xs._hardmask)
+ assert_(xh._hardmask)
+ assert_(not xs._hardmask)
xh[1:4] = [10, 20, 30]
xs[1:4] = [10, 20, 30]
assert_equal(xh._data, [0, 10, 20, 3, 4])
@@ -1622,7 +1622,7 @@ class TestMaskedArrayAttributes(TestCase):
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
assert_equal(test.flat[1], 2)
assert_equal(test.flat[2], masked)
- self.assertTrue(np.all(test.flat[0:2] == test[0, 0:2]))
+ assert_(np.all(test.flat[0:2] == test[0, 0:2]))
# Test flat on masked_matrices
test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1])
test.flat = masked_array([3, 2, 1], mask=[1, 0, 0])
@@ -1696,7 +1696,7 @@ class TestMaskedArrayAttributes(TestCase):
assert_equal(m._mask, np.ma.nomask)
-class TestFillingValues(TestCase):
+class TestFillingValues(object):
def test_check_on_scalar(self):
# Test _check_fill_value set to valid and invalid values
@@ -1711,8 +1711,8 @@ class TestFillingValues(TestCase):
assert_equal(fval, b"0")
fval = _check_fill_value(None, "|S3")
assert_equal(fval, default_fill_value(b"camelot!"))
- self.assertRaises(TypeError, _check_fill_value, 1e+20, int)
- self.assertRaises(TypeError, _check_fill_value, 'stuff', int)
+ assert_raises(TypeError, _check_fill_value, 1e+20, int)
+ assert_raises(TypeError, _check_fill_value, 'stuff', int)
def test_check_on_fields(self):
# Tests _check_fill_value with records
@@ -1720,18 +1720,18 @@ class TestFillingValues(TestCase):
ndtype = [('a', int), ('b', float), ('c', "|S3")]
# A check on a list should return a single record
fval = _check_fill_value([-999, -12345678.9, "???"], ndtype)
- self.assertTrue(isinstance(fval, ndarray))
+ assert_(isinstance(fval, ndarray))
assert_equal(fval.item(), [-999, -12345678.9, b"???"])
# A check on None should output the defaults
fval = _check_fill_value(None, ndtype)
- self.assertTrue(isinstance(fval, ndarray))
+ assert_(isinstance(fval, ndarray))
assert_equal(fval.item(), [default_fill_value(0),
default_fill_value(0.),
asbytes(default_fill_value("0"))])
#.....Using a structured type as fill_value should work
fill_val = np.array((-999, -12345678.9, "???"), dtype=ndtype)
fval = _check_fill_value(fill_val, ndtype)
- self.assertTrue(isinstance(fval, ndarray))
+ assert_(isinstance(fval, ndarray))
assert_equal(fval.item(), [-999, -12345678.9, b"???"])
#.....Using a flexible type w/ a different type shouldn't matter
@@ -1744,25 +1744,25 @@ class TestFillingValues(TestCase):
# suppress deprecation warning in 1.12 (remove in 1.13)
with assert_warns(FutureWarning):
fval = _check_fill_value(fill_val, ndtype)
- self.assertTrue(isinstance(fval, ndarray))
+ assert_(isinstance(fval, ndarray))
assert_equal(fval.item(), [-999, -12345678.9, b"???"])
#.....Using an object-array shouldn't matter either
fill_val = np.ndarray(shape=(1,), dtype=object)
fill_val[0] = (-999, -12345678.9, b"???")
fval = _check_fill_value(fill_val, object)
- self.assertTrue(isinstance(fval, ndarray))
+ assert_(isinstance(fval, ndarray))
assert_equal(fval.item(), [-999, -12345678.9, b"???"])
# NOTE: This test was never run properly as "fill_value" rather than
# "fill_val" was assigned. Written properly, it fails.
#fill_val = np.array((-999, -12345678.9, "???"))
#fval = _check_fill_value(fill_val, ndtype)
- #self.assertTrue(isinstance(fval, ndarray))
+ #assert_(isinstance(fval, ndarray))
#assert_equal(fval.item(), [-999, -12345678.9, b"???"])
#.....One-field-only flexible type should work as well
ndtype = [("a", int)]
fval = _check_fill_value(-999999999, ndtype)
- self.assertTrue(isinstance(fval, ndarray))
+ assert_(isinstance(fval, ndarray))
assert_equal(fval.item(), (-999999999,))
def test_fillvalue_conversion(self):
@@ -2027,17 +2027,17 @@ class TestFillingValues(TestCase):
assert_equal(a["f1"].fill_value, default_fill_value("eggs"))
-class TestUfuncs(TestCase):
+class TestUfuncs(object):
# Test class for the application of ufuncs on MaskedArrays.
- def setUp(self):
+ def setup(self):
# Base data definition.
self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
self.err_status = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
- def tearDown(self):
+ def teardown(self):
np.seterr(**self.err_status)
def test_testUfuncRegression(self):
@@ -2073,8 +2073,8 @@ class TestUfuncs(TestCase):
def test_reduce(self):
# Tests reduce on MaskedArrays.
a = self.d[0]
- self.assertTrue(not alltrue(a, axis=0))
- self.assertTrue(sometrue(a, axis=0))
+ assert_(not alltrue(a, axis=0))
+ assert_(sometrue(a, axis=0))
assert_equal(sum(a[:3], axis=0), 0)
assert_equal(product(a, axis=0), 0)
assert_equal(add.reduce(a), pi)
@@ -2087,8 +2087,8 @@ class TestUfuncs(TestCase):
assert_equal(amask.min(), 5)
assert_equal(amask.max(0), a.max(0))
assert_equal(amask.min(0), [5, 6, 7, 8])
- self.assertTrue(amask.max(1)[0].mask)
- self.assertTrue(amask.min(1)[0].mask)
+ assert_(amask.max(1)[0].mask)
+ assert_(amask.min(1)[0].mask)
def test_ndarray_mask(self):
# Check that the mask of the result is a ndarray (not a MaskedArray...)
@@ -2098,14 +2098,14 @@ class TestUfuncs(TestCase):
mask=[1, 0, 0, 0, 1])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
- self.assertTrue(not isinstance(test.mask, MaskedArray))
+ assert_(not isinstance(test.mask, MaskedArray))
def test_treatment_of_NotImplemented(self):
# Check that NotImplemented is returned at appropriate places
a = masked_array([1., 2.], mask=[1, 0])
- self.assertRaises(TypeError, operator.mul, a, "abc")
- self.assertRaises(TypeError, operator.truediv, a, "abc")
+ assert_raises(TypeError, operator.mul, a, "abc")
+ assert_raises(TypeError, operator.truediv, a, "abc")
class MyClass(object):
__array_priority__ = a.__array_priority__ + 1
@@ -2171,10 +2171,10 @@ class TestUfuncs(TestCase):
# also check that allclose uses ma ufuncs, to avoid warning
allclose(m, 0.5)
-class TestMaskedArrayInPlaceArithmetics(TestCase):
+class TestMaskedArrayInPlaceArithmetics(object):
# Test MaskedArray Arithmetics
- def setUp(self):
+ def setup(self):
x = arange(10)
y = arange(10)
xm = arange(10)
@@ -2673,9 +2673,9 @@ class TestMaskedArrayInPlaceArithmetics(TestCase):
assert_equal(len(w), 0, "Failed on type=%s." % t)
-class TestMaskedArrayMethods(TestCase):
+class TestMaskedArrayMethods(object):
# Test class for miscellaneous MaskedArrays methods.
- def setUp(self):
+ def setup(self):
# Base data definition.
x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
@@ -2729,25 +2729,25 @@ class TestMaskedArrayMethods(TestCase):
# Tests allclose on arrays
a = np.random.rand(10)
b = a + np.random.rand(10) * 1e-8
- self.assertTrue(allclose(a, b))
+ assert_(allclose(a, b))
# Test allclose w/ infs
a[0] = np.inf
- self.assertTrue(not allclose(a, b))
+ assert_(not allclose(a, b))
b[0] = np.inf
- self.assertTrue(allclose(a, b))
+ assert_(allclose(a, b))
# Test allclose w/ masked
a = masked_array(a)
a[-1] = masked
- self.assertTrue(allclose(a, b, masked_equal=True))
- self.assertTrue(not allclose(a, b, masked_equal=False))
+ assert_(allclose(a, b, masked_equal=True))
+ assert_(not allclose(a, b, masked_equal=False))
# Test comparison w/ scalar
a *= 1e-8
a[0] = 0
- self.assertTrue(allclose(a, 0, masked_equal=True))
+ assert_(allclose(a, 0, masked_equal=True))
# Test that the function works for MIN_INT integer typed arrays
a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
- self.assertTrue(allclose(a, a))
+ assert_(allclose(a, a))
def test_allany(self):
# Checks the any/all methods/functions.
@@ -2761,15 +2761,15 @@ class TestMaskedArrayMethods(TestCase):
mxbig = (mx > 0.5)
mxsmall = (mx < 0.5)
- self.assertFalse(mxbig.all())
- self.assertTrue(mxbig.any())
+ assert_(not mxbig.all())
+ assert_(mxbig.any())
assert_equal(mxbig.all(0), [False, False, True])
assert_equal(mxbig.all(1), [False, False, True])
assert_equal(mxbig.any(0), [False, False, True])
assert_equal(mxbig.any(1), [True, True, True])
- self.assertFalse(mxsmall.all())
- self.assertTrue(mxsmall.any())
+ assert_(not mxsmall.all())
+ assert_(mxsmall.any())
assert_equal(mxsmall.all(0), [True, True, False])
assert_equal(mxsmall.all(1), [False, False, False])
assert_equal(mxsmall.any(0), [True, True, False])
@@ -2787,15 +2787,15 @@ class TestMaskedArrayMethods(TestCase):
mXbig = (mX > 0.5)
mXsmall = (mX < 0.5)
- self.assertFalse(mXbig.all())
- self.assertTrue(mXbig.any())
+ assert_(not mXbig.all())
+ assert_(mXbig.any())
assert_equal(mXbig.all(0), np.matrix([False, False, True]))
assert_equal(mXbig.all(1), np.matrix([False, False, True]).T)
assert_equal(mXbig.any(0), np.matrix([False, False, True]))
assert_equal(mXbig.any(1), np.matrix([True, True, True]).T)
- self.assertFalse(mXsmall.all())
- self.assertTrue(mXsmall.any())
+ assert_(not mXsmall.all())
+ assert_(mXsmall.any())
assert_equal(mXsmall.all(0), np.matrix([True, True, False]))
assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T)
assert_equal(mXsmall.any(0), np.matrix([True, True, False]))
@@ -2806,18 +2806,18 @@ class TestMaskedArrayMethods(TestCase):
store = empty((), dtype=bool)
full = array([1, 2, 3], mask=True)
- self.assertTrue(full.all() is masked)
+ assert_(full.all() is masked)
full.all(out=store)
- self.assertTrue(store)
- self.assertTrue(store._mask, True)
- self.assertTrue(store is not masked)
+ assert_(store)
+ assert_(store._mask, True)
+ assert_(store is not masked)
store = empty((), dtype=bool)
- self.assertTrue(full.any() is masked)
+ assert_(full.any() is masked)
full.any(out=store)
- self.assertTrue(not store)
- self.assertTrue(store._mask, True)
- self.assertTrue(store is not masked)
+ assert_(not store)
+ assert_(store._mask, True)
+ assert_(store is not masked)
def test_argmax_argmin(self):
# Tests argmin & argmax on MaskedArrays.
@@ -2902,7 +2902,7 @@ class TestMaskedArrayMethods(TestCase):
a = array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0])
b = a.compressed()
assert_equal(b, a)
- self.assertTrue(isinstance(b, np.matrix))
+ assert_(isinstance(b, np.matrix))
a[0, 0] = masked
b = a.compressed()
assert_equal(b, [[2, 3, 4]])
@@ -2936,11 +2936,11 @@ class TestMaskedArrayMethods(TestCase):
n = [0, 0, 0, 1, 1]
m = make_mask(n)
x = array(d, mask=m)
- self.assertTrue(x[3] is masked)
- self.assertTrue(x[4] is masked)
+ assert_(x[3] is masked)
+ assert_(x[4] is masked)
x[[1, 4]] = [10, 40]
- self.assertTrue(x[3] is masked)
- self.assertTrue(x[4] is not masked)
+ assert_(x[3] is masked)
+ assert_(x[4] is not masked)
assert_equal(x, [0, 10, 2, -1, 40])
x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2)
@@ -2966,12 +2966,12 @@ class TestMaskedArrayMethods(TestCase):
z = array([3., -1.], mask=[False, True])
x.put([1, 2], z)
- self.assertTrue(x[0] is not masked)
+ assert_(x[0] is not masked)
assert_equal(x[0], 0)
- self.assertTrue(x[1] is not masked)
+ assert_(x[1] is not masked)
assert_equal(x[1], 3)
- self.assertTrue(x[2] is masked)
- self.assertTrue(x[3] is not masked)
+ assert_(x[2] is masked)
+ assert_(x[3] is not masked)
assert_equal(x[3], 0)
def test_put_hardmask(self):
@@ -3072,7 +3072,7 @@ class TestMaskedArrayMethods(TestCase):
x = [1, 4, 2, 3]
sortedx = sort(x)
- self.assertTrue(not isinstance(sorted, MaskedArray))
+ assert_(not isinstance(sorted, MaskedArray))
x = array([0, 1, -1, -2, 2], mask=nomask, dtype=np.int8)
sortedx = sort(x, endwith=False)
@@ -3186,7 +3186,7 @@ class TestMaskedArrayMethods(TestCase):
assert_equal(data.squeeze(), [1, 2, 3])
assert_equal(data.squeeze()._mask, [1, 1, 1])
data = masked_array([[1]], mask=True)
- self.assertTrue(data.squeeze() is masked)
+ assert_(data.squeeze() is masked)
def test_swapaxes(self):
# Tests swapaxes on MaskedArrays.
@@ -3220,8 +3220,8 @@ class TestMaskedArrayMethods(TestCase):
masked_array([[10, 20], [10, 20]], [[0, 1], [0, 1]]))
# assert_equal crashes when passed np.ma.mask
- self.assertIs(x[1], np.ma.masked)
- self.assertIs(x.take(1), np.ma.masked)
+ assert_(x[1] is np.ma.masked)
+ assert_(x.take(1) is np.ma.masked)
x = array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0, ]])
assert_equal(x.take([0, 2], axis=1),
@@ -3265,8 +3265,8 @@ class TestMaskedArrayMethods(TestCase):
x = array(np.arange(12))
x[[1, -2]] = masked
xlist = x.tolist()
- self.assertTrue(xlist[1] is None)
- self.assertTrue(xlist[-2] is None)
+ assert_(xlist[1] is None)
+ assert_(xlist[-2] is None)
# ... on 2D
x.shape = (3, 4)
xlist = x.tolist()
@@ -3370,9 +3370,9 @@ class TestMaskedArrayMethods(TestCase):
assert_equal(MaskedArray.cumsum(marray.T, 0), control.cumsum(0))
-class TestMaskedArrayMathMethods(TestCase):
+class TestMaskedArrayMathMethods(object):
- def setUp(self):
+ def setup(self):
# Base data definition.
x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
@@ -3431,12 +3431,12 @@ class TestMaskedArrayMathMethods(TestCase):
output.fill(-9999)
result = npfunc(xm, axis=0, out=output)
# ... the result should be the given output
- self.assertTrue(result is output)
+ assert_(result is output)
assert_equal(result, xmmeth(axis=0, out=output))
output = empty((3, 4), dtype=int)
result = xmmeth(axis=0, out=output)
- self.assertTrue(result is output)
+ assert_(result is output)
def test_ptp(self):
# Tests ptp on MaskedArrays.
@@ -3568,31 +3568,31 @@ class TestMaskedArrayMathMethods(TestCase):
x = array(arange(10), mask=True)
for methodname in ('var', 'std'):
method = getattr(x, methodname)
- self.assertTrue(method() is masked)
- self.assertTrue(method(0) is masked)
- self.assertTrue(method(-1) is masked)
+ assert_(method() is masked)
+ assert_(method(0) is masked)
+ assert_(method(-1) is masked)
# Using a masked array as explicit output
method(out=mout)
- self.assertTrue(mout is not masked)
+ assert_(mout is not masked)
assert_equal(mout.mask, True)
# Using a ndarray as explicit output
method(out=nout)
- self.assertTrue(np.isnan(nout))
+ assert_(np.isnan(nout))
x = array(arange(10), mask=True)
x[-1] = 9
for methodname in ('var', 'std'):
method = getattr(x, methodname)
- self.assertTrue(method(ddof=1) is masked)
- self.assertTrue(method(0, ddof=1) is masked)
- self.assertTrue(method(-1, ddof=1) is masked)
+ assert_(method(ddof=1) is masked)
+ assert_(method(0, ddof=1) is masked)
+ assert_(method(-1, ddof=1) is masked)
# Using a masked array as explicit output
method(out=mout, ddof=1)
- self.assertTrue(mout is not masked)
+ assert_(mout is not masked)
assert_equal(mout.mask, True)
# Using a ndarray as explicit output
method(out=nout, ddof=1)
- self.assertTrue(np.isnan(nout))
+ assert_(np.isnan(nout))
def test_varstd_ddof(self):
a = array([[1, 1, 0], [1, 1, 0]], mask=[[0, 0, 1], [0, 0, 1]])
@@ -3641,9 +3641,9 @@ class TestMaskedArrayMathMethods(TestCase):
assert_equal(a.max(1), [3, 6])
-class TestMaskedArrayMathMethodsComplex(TestCase):
+class TestMaskedArrayMathMethodsComplex(object):
# Test class for miscellaneous MaskedArrays methods.
- def setUp(self):
+ def setup(self):
# Base data definition.
x = np.array([8.375j, 7.545j, 8.828j, 8.5j, 1.757j, 5.928,
8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
@@ -3694,10 +3694,10 @@ class TestMaskedArrayMathMethodsComplex(TestCase):
mX[:, k].compressed().std())
-class TestMaskedArrayFunctions(TestCase):
+class TestMaskedArrayFunctions(object):
# Test class for miscellaneous functions.
- def setUp(self):
+ def setup(self):
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
@@ -3821,12 +3821,12 @@ class TestMaskedArrayFunctions(TestCase):
output.fill(-9999)
result = np.round(xm, decimals=2, out=output)
# ... the result should be the given output
- self.assertTrue(result is output)
+ assert_(result is output)
assert_equal(result, xm.round(decimals=2, out=output))
output = empty((3, 4), dtype=float)
result = xm.round(decimals=2, out=output)
- self.assertTrue(result is output)
+ assert_(result is output)
def test_round_with_scalar(self):
# Testing round with scalar/zero dimension input
@@ -3855,13 +3855,13 @@ class TestMaskedArrayFunctions(TestCase):
def test_identity(self):
a = identity(5)
- self.assertTrue(isinstance(a, MaskedArray))
+ assert_(isinstance(a, MaskedArray))
assert_equal(a, np.identity(5))
def test_power(self):
x = -1.1
assert_almost_equal(power(x, 2.), 1.21)
- self.assertTrue(power(x, masked) is masked)
+ assert_(power(x, masked) is masked)
x = array([-1.1, -1.1, 1.1, 1.1, 0.])
b = array([0.5, 2., 0.5, 2., -1.], mask=[0, 0, 0, 0, 1])
y = power(x, b)
@@ -4069,7 +4069,7 @@ class TestMaskedArrayFunctions(TestCase):
store = empty(4, dtype=int)
chosen = choose([2, 3, 1, 0], choices, out=store)
assert_equal(store, array([20, 31, 12, 3]))
- self.assertTrue(store is chosen)
+ assert_(store is chosen)
# Check with some masked indices + out
store = empty(4, dtype=int)
indices_ = array([2, 3, 1, 0], mask=[1, 0, 0, 1])
@@ -4090,25 +4090,25 @@ class TestMaskedArrayFunctions(TestCase):
# Try the default
b = a.reshape((5, 2))
assert_equal(b.shape, (5, 2))
- self.assertTrue(b.flags['C'])
+ assert_(b.flags['C'])
# Try w/ arguments as list instead of tuple
b = a.reshape(5, 2)
assert_equal(b.shape, (5, 2))
- self.assertTrue(b.flags['C'])
+ assert_(b.flags['C'])
# Try w/ order
b = a.reshape((5, 2), order='F')
assert_equal(b.shape, (5, 2))
- self.assertTrue(b.flags['F'])
+ assert_(b.flags['F'])
# Try w/ order
b = a.reshape(5, 2, order='F')
assert_equal(b.shape, (5, 2))
- self.assertTrue(b.flags['F'])
+ assert_(b.flags['F'])
c = np.reshape(a, (2, 5))
- self.assertTrue(isinstance(c, MaskedArray))
+ assert_(isinstance(c, MaskedArray))
assert_equal(c.shape, (2, 5))
- self.assertTrue(c[0, 0] is masked)
- self.assertTrue(c.flags['C'])
+ assert_(c[0, 0] is masked)
+ assert_(c.flags['C'])
def test_make_mask_descr(self):
# Flexible
@@ -4331,9 +4331,9 @@ class TestMaskedArrayFunctions(TestCase):
assert_equal(test, masked_equal([-1, -1, -1, -1, -1], -1))
-class TestMaskedFields(TestCase):
+class TestMaskedFields(object):
- def setUp(self):
+ def setup(self):
ilist = [1, 2, 3, 4, 5]
flist = [1.1, 2.2, 3.3, 4.4, 5.5]
slist = ['one', 'two', 'three', 'four', 'five']
@@ -4432,7 +4432,7 @@ class TestMaskedFields(TestCase):
test = a.view((float, 2), np.matrix)
assert_equal(test, data)
- self.assertTrue(isinstance(test, np.matrix))
+ assert_(isinstance(test, np.matrix))
def test_getitem(self):
ndtype = [('a', float), ('b', float)]
@@ -4497,7 +4497,7 @@ class TestMaskedFields(TestCase):
assert_equal(len(rec), len(self.data['ddtype']))
-class TestMaskedObjectArray(TestCase):
+class TestMaskedObjectArray(object):
def test_getitem(self):
arr = np.ma.array([None, None])
@@ -4545,9 +4545,9 @@ class TestMaskedObjectArray(TestCase):
assert_(arr[0] is np.ma.masked)
-class TestMaskedView(TestCase):
+class TestMaskedView(object):
- def setUp(self):
+ def setup(self):
iterator = list(zip(np.arange(10), np.random.rand(10)))
data = np.array(iterator)
a = array(iterator, dtype=[('a', float), ('b', float)])
@@ -4558,14 +4558,14 @@ class TestMaskedView(TestCase):
def test_view_to_nothing(self):
(data, a, controlmask) = self.data
test = a.view()
- self.assertTrue(isinstance(test, MaskedArray))
+ assert_(isinstance(test, MaskedArray))
assert_equal(test._data, a._data)
assert_equal(test._mask, a._mask)
def test_view_to_type(self):
(data, a, controlmask) = self.data
test = a.view(np.ndarray)
- self.assertTrue(not isinstance(test, MaskedArray))
+ assert_(not isinstance(test, MaskedArray))
assert_equal(test, a._data)
assert_equal_records(test, data.view(a.dtype).squeeze())
@@ -4573,7 +4573,7 @@ class TestMaskedView(TestCase):
(data, a, controlmask) = self.data
# View globally
test = a.view(float)
- self.assertTrue(isinstance(test, MaskedArray))
+ assert_(isinstance(test, MaskedArray))
assert_equal(test, data.ravel())
assert_equal(test.mask, controlmask)
@@ -4586,13 +4586,13 @@ class TestMaskedView(TestCase):
assert_equal(test['B'], a['b'])
test = a[0].view([('A', float), ('B', float)])
- self.assertTrue(isinstance(test, MaskedArray))
+ assert_(isinstance(test, MaskedArray))
assert_equal(test.mask.dtype.names, ('A', 'B'))
assert_equal(test['A'], a['a'][0])
assert_equal(test['B'], a['b'][0])
test = a[-1].view([('A', float), ('B', float)])
- self.assertTrue(isinstance(test, MaskedArray))
+ assert_(isinstance(test, MaskedArray))
assert_equal(test.dtype.names, ('A', 'B'))
assert_equal(test['A'], a['a'][-1])
assert_equal(test['B'], a['b'][-1])
@@ -4601,17 +4601,17 @@ class TestMaskedView(TestCase):
(data, a, controlmask) = self.data
# View globally
test = a.view((float, 2))
- self.assertTrue(isinstance(test, MaskedArray))
+ assert_(isinstance(test, MaskedArray))
assert_equal(test, data)
assert_equal(test.mask, controlmask.reshape(-1, 2))
# View on 1 masked element
test = a[0].view((float, 2))
- self.assertTrue(isinstance(test, MaskedArray))
+ assert_(isinstance(test, MaskedArray))
assert_equal(test, data[0])
assert_equal(test.mask, (1, 0))
# View on 1 unmasked element
test = a[-1].view((float, 2))
- self.assertTrue(isinstance(test, MaskedArray))
+ assert_(isinstance(test, MaskedArray))
assert_equal(test, data[-1])
def test_view_to_dtype_and_type(self):
@@ -4619,10 +4619,10 @@ class TestMaskedView(TestCase):
test = a.view((float, 2), np.matrix)
assert_equal(test, data)
- self.assertTrue(isinstance(test, np.matrix))
- self.assertTrue(not isinstance(test, MaskedArray))
+ assert_(isinstance(test, np.matrix))
+ assert_(not isinstance(test, MaskedArray))
-class TestOptionalArgs(TestCase):
+class TestOptionalArgs(object):
def test_ndarrayfuncs(self):
# test axis arg behaves the same as ndarray (including multiple axes)
@@ -4709,10 +4709,10 @@ class TestOptionalArgs(TestCase):
assert_raises(np.AxisError, count, np.ma.array(1), axis=1)
-class TestMaskedConstant(TestCase):
+class TestMaskedConstant(object):
def _do_add_test(self, add):
# sanity check
- self.assertIs(add(np.ma.masked, 1), np.ma.masked)
+ assert_(add(np.ma.masked, 1) is np.ma.masked)
# now try with a vector
vector = np.array([1, 2, 3])
diff --git a/numpy/ma/tests/test_deprecations.py b/numpy/ma/tests/test_deprecations.py
index 24dd7cb8d..23c095470 100644
--- a/numpy/ma/tests/test_deprecations.py
+++ b/numpy/ma/tests/test_deprecations.py
@@ -4,11 +4,11 @@
from __future__ import division, absolute_import, print_function
import numpy as np
-from numpy.testing import TestCase, run_module_suite, assert_warns
+from numpy.testing import run_module_suite, assert_warns
from numpy.ma.testutils import assert_equal
from numpy.ma.core import MaskedArrayFutureWarning
-class TestArgsort(TestCase):
+class TestArgsort(object):
""" gh-8701 """
def _test_base(self, argsort, cls):
arr_0d = np.array(1).view(cls)
@@ -37,7 +37,7 @@ class TestArgsort(TestCase):
return self._test_base(np.ma.MaskedArray.argsort, np.ma.MaskedArray)
-class TestMinimumMaximum(TestCase):
+class TestMinimumMaximum(object):
def test_minimum(self):
assert_warns(DeprecationWarning, np.ma.minimum, np.ma.array([1, 2]))
diff --git a/numpy/ma/tests/test_extras.py b/numpy/ma/tests/test_extras.py
index 18198d4a4..897a0fd88 100644
--- a/numpy/ma/tests/test_extras.py
+++ b/numpy/ma/tests/test_extras.py
@@ -14,8 +14,7 @@ import itertools
import numpy as np
from numpy.testing import (
- TestCase, run_module_suite, assert_warns, suppress_warnings,
- assert_raises
+ run_module_suite, assert_warns, suppress_warnings, assert_raises,
)
from numpy.ma.testutils import (
assert_, assert_array_equal, assert_equal, assert_almost_equal
@@ -35,7 +34,7 @@ from numpy.ma.extras import (
import numpy.ma.extras as mae
-class TestGeneric(TestCase):
+class TestGeneric(object):
#
def test_masked_all(self):
# Tests masked_all
@@ -140,7 +139,7 @@ class TestGeneric(TestCase):
assert_equal(test, None)
-class TestAverage(TestCase):
+class TestAverage(object):
# Several tests of average. Why so many ? Good point...
def test_testAverage1(self):
# Test of average.
@@ -149,7 +148,7 @@ class TestAverage(TestCase):
assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.]))
result, wts = average(ott, weights=[1., 1., 2., 1.], returned=1)
assert_equal(2.0, result)
- self.assertTrue(wts == 4.0)
+ assert_(wts == 4.0)
ott[:] = masked
assert_equal(average(ott, axis=0).mask, [True])
ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
@@ -271,7 +270,7 @@ class TestAverage(TestCase):
assert_almost_equal(wav1.imag, expected1.imag)
-class TestConcatenator(TestCase):
+class TestConcatenator(object):
# Tests for mr_, the equivalent of r_ for masked arrays.
def test_1d(self):
@@ -281,7 +280,7 @@ class TestConcatenator(TestCase):
m = [1, 0, 0, 0, 0]
d = masked_array(b, mask=m)
c = mr_[d, 0, 0, d]
- self.assertTrue(isinstance(c, MaskedArray))
+ assert_(isinstance(c, MaskedArray))
assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1])
assert_array_equal(c.mask, mr_[m, 0, 0, m])
@@ -295,12 +294,12 @@ class TestConcatenator(TestCase):
b_2 = masked_array(a_2, mask=m_2)
# append columns
d = mr_['1', b_1, b_2]
- self.assertTrue(d.shape == (5, 10))
+ assert_(d.shape == (5, 10))
assert_array_equal(d[:, :5], b_1)
assert_array_equal(d[:, 5:], b_2)
assert_array_equal(d.mask, np.r_['1', m_1, m_2])
d = mr_[b_1, b_2]
- self.assertTrue(d.shape == (10, 5))
+ assert_(d.shape == (10, 5))
assert_array_equal(d[:5,:], b_1)
assert_array_equal(d[5:,:], b_2)
assert_array_equal(d.mask, np.r_[m_1, m_2])
@@ -318,7 +317,7 @@ class TestConcatenator(TestCase):
assert_equal(type(actual.data), type(expected.data))
-class TestNotMasked(TestCase):
+class TestNotMasked(object):
# Tests notmasked_edges and notmasked_contiguous.
def test_edges(self):
@@ -367,19 +366,19 @@ class TestNotMasked(TestCase):
assert_equal(tmp[-3], slice(0, 4, None))
#
tmp = notmasked_contiguous(a, 0)
- self.assertTrue(len(tmp[-1]) == 1)
- self.assertTrue(tmp[-2] is None)
+ assert_(len(tmp[-1]) == 1)
+ assert_(tmp[-2] is None)
assert_equal(tmp[-3], tmp[-1])
- self.assertTrue(len(tmp[0]) == 2)
+ assert_(len(tmp[0]) == 2)
#
tmp = notmasked_contiguous(a, 1)
assert_equal(tmp[0][-1], slice(0, 4, None))
- self.assertTrue(tmp[1] is None)
+ assert_(tmp[1] is None)
assert_equal(tmp[2][-1], slice(7, 8, None))
assert_equal(tmp[2][-2], slice(0, 6, None))
-class TestCompressFunctions(TestCase):
+class TestCompressFunctions(object):
def test_compress_nd(self):
# Tests compress_nd
@@ -538,12 +537,12 @@ class TestCompressFunctions(TestCase):
assert_equal(mask_rowcols(x, 1,).mask,
[[1, 1, 0], [1, 1, 0], [1, 1, 0]])
x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
- self.assertTrue(mask_rowcols(x).all() is masked)
- self.assertTrue(mask_rowcols(x, 0).all() is masked)
- self.assertTrue(mask_rowcols(x, 1).all() is masked)
- self.assertTrue(mask_rowcols(x).mask.all())
- self.assertTrue(mask_rowcols(x, 0).mask.all())
- self.assertTrue(mask_rowcols(x, 1).mask.all())
+ assert_(mask_rowcols(x).all() is masked)
+ assert_(mask_rowcols(x, 0).all() is masked)
+ assert_(mask_rowcols(x, 1).all() is masked)
+ assert_(mask_rowcols(x).mask.all())
+ assert_(mask_rowcols(x, 0).mask.all())
+ assert_(mask_rowcols(x, 1).mask.all())
def test_dot(self):
# Tests dot product
@@ -632,7 +631,7 @@ class TestCompressFunctions(TestCase):
assert_equal(a, res)
-class TestApplyAlongAxis(TestCase):
+class TestApplyAlongAxis(object):
# Tests 2D functions
def test_3d(self):
a = arange(12.).reshape(2, 2, 3)
@@ -654,7 +653,7 @@ class TestApplyAlongAxis(TestCase):
assert_equal(xa, [[2, 5], [8, 11]])
-class TestApplyOverAxes(TestCase):
+class TestApplyOverAxes(object):
# Tests apply_over_axes
def test_basic(self):
a = arange(24).reshape(2, 3, 4)
@@ -667,7 +666,7 @@ class TestApplyOverAxes(TestCase):
assert_equal(test, ctrl)
-class TestMedian(TestCase):
+class TestMedian(object):
def test_pytype(self):
r = np.ma.median([[np.inf, np.inf], [np.inf, np.inf]], axis=-1)
assert_equal(r, np.inf)
@@ -1069,9 +1068,9 @@ class TestMedian(TestCase):
assert_(type(np.ma.median(o.astype(object))), float)
-class TestCov(TestCase):
+class TestCov(object):
- def setUp(self):
+ def setup(self):
self.data = array(np.random.rand(12))
def test_1d_without_missing(self):
@@ -1136,9 +1135,9 @@ class TestCov(TestCase):
x.shape[0] / frac))
-class TestCorrcoef(TestCase):
+class TestCorrcoef(object):
- def setUp(self):
+ def setup(self):
self.data = array(np.random.rand(12))
self.data2 = array(np.random.rand(12))
@@ -1243,7 +1242,7 @@ class TestCorrcoef(TestCase):
control[:-1, :-1])
-class TestPolynomial(TestCase):
+class TestPolynomial(object):
#
def test_polyfit(self):
# Tests polyfit
@@ -1301,13 +1300,13 @@ class TestPolynomial(TestCase):
assert_almost_equal(a, a_)
-class TestArraySetOps(TestCase):
+class TestArraySetOps(object):
def test_unique_onlist(self):
# Test unique on list
data = [1, 1, 1, 2, 2, 3]
test = unique(data, return_index=True, return_inverse=True)
- self.assertTrue(isinstance(test[0], MaskedArray))
+ assert_(isinstance(test[0], MaskedArray))
assert_equal(test[0], masked_array([1, 2, 3], mask=[0, 0, 0]))
assert_equal(test[1], [0, 3, 5])
assert_equal(test[2], [0, 0, 0, 1, 1, 2])
@@ -1404,13 +1403,13 @@ class TestArraySetOps(TestCase):
test = ediff1d(x)
control = array([1, 1, 1, 1], mask=[0, 0, 0, 0])
assert_equal(test, control)
- self.assertTrue(isinstance(test, MaskedArray))
+ assert_(isinstance(test, MaskedArray))
assert_equal(test.filled(0), control.filled(0))
assert_equal(test.mask, control.mask)
#
test = ediff1d(x, to_end=masked, to_begin=masked)
control = array([0, 1, 1, 1, 1, 0], mask=[1, 0, 0, 0, 0, 1])
- self.assertTrue(isinstance(test, MaskedArray))
+ assert_(isinstance(test, MaskedArray))
assert_equal(test.filled(0), control.filled(0))
assert_equal(test.mask, control.mask)
@@ -1525,7 +1524,7 @@ class TestArraySetOps(TestCase):
assert_array_equal(setdiff1d(a, b), np.array(['c']))
-class TestShapeBase(TestCase):
+class TestShapeBase(object):
def test_atleast_2d(self):
# Test atleast_2d
diff --git a/numpy/ma/tests/test_mrecords.py b/numpy/ma/tests/test_mrecords.py
index 785733400..da22f8dcd 100644
--- a/numpy/ma/tests/test_mrecords.py
+++ b/numpy/ma/tests/test_mrecords.py
@@ -14,7 +14,7 @@ import numpy as np
import numpy.ma as ma
from numpy import recarray
from numpy.ma import masked, nomask
-from numpy.testing import TestCase, run_module_suite, temppath
+from numpy.testing import run_module_suite, temppath
from numpy.core.records import (
fromrecords as recfromrecords, fromarrays as recfromarrays
)
@@ -28,21 +28,14 @@ from numpy.ma.testutils import (
)
-class TestMRecords(TestCase):
- # Base test class for MaskedArrays.
- def __init__(self, *args, **kwds):
- TestCase.__init__(self, *args, **kwds)
- self.setup()
+class TestMRecords(object):
- def setup(self):
- # Generic setup
- ilist = [1, 2, 3, 4, 5]
- flist = [1.1, 2.2, 3.3, 4.4, 5.5]
- slist = [b'one', b'two', b'three', b'four', b'five']
- ddtype = [('a', int), ('b', float), ('c', '|S8')]
- mask = [0, 1, 0, 0, 1]
- self.base = ma.array(list(zip(ilist, flist, slist)),
- mask=mask, dtype=ddtype)
+ ilist = [1, 2, 3, 4, 5]
+ flist = [1.1, 2.2, 3.3, 4.4, 5.5]
+ slist = [b'one', b'two', b'three', b'four', b'five']
+ ddtype = [('a', int), ('b', float), ('c', '|S8')]
+ mask = [0, 1, 0, 0, 1]
+ base = ma.array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype)
def test_byview(self):
# Test creation by view
@@ -279,16 +272,16 @@ class TestMRecords(TestCase):
base = self.base.copy()
mbase = base.view(mrecarray)
mbase.harden_mask()
- self.assertTrue(mbase._hardmask)
+ assert_(mbase._hardmask)
mbase.mask = nomask
assert_equal_records(mbase._mask, base._mask)
mbase.soften_mask()
- self.assertTrue(not mbase._hardmask)
+ assert_(not mbase._hardmask)
mbase.mask = nomask
# So, the mask of a field is no longer set to nomask...
assert_equal_records(mbase._mask,
ma.make_mask_none(base.shape, base.dtype))
- self.assertTrue(ma.make_mask(mbase['b']._mask) is nomask)
+ assert_(ma.make_mask(mbase['b']._mask) is nomask)
assert_equal(mbase['a']._mask, mbase['b']._mask)
def test_pickling(self):
@@ -356,9 +349,9 @@ class TestMRecords(TestCase):
dtype=mult.dtype))
-class TestView(TestCase):
+class TestView(object):
- def setUp(self):
+ def setup(self):
(a, b) = (np.arange(10), np.random.rand(10))
ndtype = [('a', np.float), ('b', np.float)]
arr = np.array(list(zip(a, b)), dtype=ndtype)
@@ -370,7 +363,7 @@ class TestView(TestCase):
def test_view_by_itself(self):
(mrec, a, b, arr) = self.data
test = mrec.view()
- self.assertTrue(isinstance(test, MaskedRecords))
+ assert_(isinstance(test, MaskedRecords))
assert_equal_records(test, mrec)
assert_equal_records(test._mask, mrec._mask)
@@ -378,40 +371,34 @@ class TestView(TestCase):
(mrec, a, b, arr) = self.data
ntype = (np.float, 2)
test = mrec.view(ntype)
- self.assertTrue(isinstance(test, ma.MaskedArray))
+ assert_(isinstance(test, ma.MaskedArray))
assert_equal(test, np.array(list(zip(a, b)), dtype=np.float))
- self.assertTrue(test[3, 1] is ma.masked)
+ assert_(test[3, 1] is ma.masked)
def test_view_flexible_type(self):
(mrec, a, b, arr) = self.data
alttype = [('A', np.float), ('B', np.float)]
test = mrec.view(alttype)
- self.assertTrue(isinstance(test, MaskedRecords))
+ assert_(isinstance(test, MaskedRecords))
assert_equal_records(test, arr.view(alttype))
- self.assertTrue(test['B'][3] is masked)
+ assert_(test['B'][3] is masked)
assert_equal(test.dtype, np.dtype(alttype))
- self.assertTrue(test._fill_value is None)
+ assert_(test._fill_value is None)
##############################################################################
-class TestMRecordsImport(TestCase):
- # Base test class for MaskedArrays.
- def __init__(self, *args, **kwds):
- TestCase.__init__(self, *args, **kwds)
- self.setup()
-
- def setup(self):
- # Generic setup
- _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
- _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
- _c = ma.array([b'one', b'two', b'three'],
- mask=[0, 0, 1], dtype='|S8')
- ddtype = [('a', int), ('b', float), ('c', '|S8')]
- mrec = fromarrays([_a, _b, _c], dtype=ddtype,
- fill_value=(b'99999', b'99999.',
- b'N/A'))
- nrec = recfromarrays((_a._data, _b._data, _c._data), dtype=ddtype)
- self.data = (mrec, nrec, ddtype)
+class TestMRecordsImport(object):
+
+ _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
+ _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float)
+ _c = ma.array([b'one', b'two', b'three'],
+ mask=[0, 0, 1], dtype='|S8')
+ ddtype = [('a', int), ('b', float), ('c', '|S8')]
+ mrec = fromarrays([_a, _b, _c], dtype=ddtype,
+ fill_value=(b'99999', b'99999.',
+ b'N/A'))
+ nrec = recfromarrays((_a._data, _b._data, _c._data), dtype=ddtype)
+ data = (mrec, nrec, ddtype)
def test_fromarrays(self):
_a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int)
@@ -485,7 +472,7 @@ class TestMRecordsImport(TestCase):
with open(path, 'w') as f:
f.write(fcontent)
mrectxt = fromtextfile(path, delimitor=',', varnames='ABCDEFG')
- self.assertTrue(isinstance(mrectxt, MaskedRecords))
+ assert_(isinstance(mrectxt, MaskedRecords))
assert_equal(mrectxt.F, [1, 1, 1, 1])
assert_equal(mrectxt.E._mask, [1, 1, 1, 1])
assert_equal(mrectxt.C, [1, 2, 3.e+5, -1e-10])
diff --git a/numpy/ma/tests/test_old_ma.py b/numpy/ma/tests/test_old_ma.py
index 769e281d4..9152e8d73 100644
--- a/numpy/ma/tests/test_old_ma.py
+++ b/numpy/ma/tests/test_old_ma.py
@@ -5,7 +5,9 @@ from functools import reduce
import numpy as np
import numpy.core.umath as umath
import numpy.core.fromnumeric as fromnumeric
-from numpy.testing import TestCase, run_module_suite, assert_
+from numpy.testing import (
+ run_module_suite, assert_, assert_raises, assert_equal,
+ )
from numpy.ma.testutils import assert_array_equal
from numpy.ma import (
MaskType, MaskedArray, absolute, add, all, allclose, allequal, alltrue,
@@ -31,9 +33,9 @@ def eq(v, w, msg=''):
return result
-class TestMa(TestCase):
+class TestMa(object):
- def setUp(self):
+ def setup(self):
x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
a10 = 10.
@@ -51,16 +53,16 @@ class TestMa(TestCase):
def test_testBasic1d(self):
# Test of basic array creation and properties in 1 dimension.
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
- self.assertFalse(isMaskedArray(x))
- self.assertTrue(isMaskedArray(xm))
- self.assertEqual(shape(xm), s)
- self.assertEqual(xm.shape, s)
- self.assertEqual(xm.dtype, x.dtype)
- self.assertEqual(xm.size, reduce(lambda x, y:x * y, s))
- self.assertEqual(count(xm), len(m1) - reduce(lambda x, y:x + y, m1))
- self.assertTrue(eq(xm, xf))
- self.assertTrue(eq(filled(xm, 1.e20), xf))
- self.assertTrue(eq(x, xm))
+ assert_(not isMaskedArray(x))
+ assert_(isMaskedArray(xm))
+ assert_equal(shape(xm), s)
+ assert_equal(xm.shape, s)
+ assert_equal(xm.dtype, x.dtype)
+ assert_equal(xm.size, reduce(lambda x, y:x * y, s))
+ assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1))
+ assert_(eq(xm, xf))
+ assert_(eq(filled(xm, 1.e20), xf))
+ assert_(eq(x, xm))
def test_testBasic2d(self):
# Test of basic array creation and properties in 2 dimensions.
@@ -72,107 +74,107 @@ class TestMa(TestCase):
ym.shape = s
xf.shape = s
- self.assertFalse(isMaskedArray(x))
- self.assertTrue(isMaskedArray(xm))
- self.assertEqual(shape(xm), s)
- self.assertEqual(xm.shape, s)
- self.assertEqual(xm.size, reduce(lambda x, y:x * y, s))
- self.assertEqual(count(xm),
+ assert_(not isMaskedArray(x))
+ assert_(isMaskedArray(xm))
+ assert_equal(shape(xm), s)
+ assert_equal(xm.shape, s)
+ assert_equal(xm.size, reduce(lambda x, y:x * y, s))
+ assert_equal(count(xm),
len(m1) - reduce(lambda x, y:x + y, m1))
- self.assertTrue(eq(xm, xf))
- self.assertTrue(eq(filled(xm, 1.e20), xf))
- self.assertTrue(eq(x, xm))
- self.setUp()
+ assert_(eq(xm, xf))
+ assert_(eq(filled(xm, 1.e20), xf))
+ assert_(eq(x, xm))
+ self.setup()
def test_testArithmetic(self):
# Test of basic arithmetic.
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
a2d = array([[1, 2], [0, 4]])
a2dm = masked_array(a2d, [[0, 0], [1, 0]])
- self.assertTrue(eq(a2d * a2d, a2d * a2dm))
- self.assertTrue(eq(a2d + a2d, a2d + a2dm))
- self.assertTrue(eq(a2d - a2d, a2d - a2dm))
+ assert_(eq(a2d * a2d, a2d * a2dm))
+ assert_(eq(a2d + a2d, a2d + a2dm))
+ assert_(eq(a2d - a2d, a2d - a2dm))
for s in [(12,), (4, 3), (2, 6)]:
x = x.reshape(s)
y = y.reshape(s)
xm = xm.reshape(s)
ym = ym.reshape(s)
xf = xf.reshape(s)
- self.assertTrue(eq(-x, -xm))
- self.assertTrue(eq(x + y, xm + ym))
- self.assertTrue(eq(x - y, xm - ym))
- self.assertTrue(eq(x * y, xm * ym))
+ assert_(eq(-x, -xm))
+ assert_(eq(x + y, xm + ym))
+ assert_(eq(x - y, xm - ym))
+ assert_(eq(x * y, xm * ym))
with np.errstate(divide='ignore', invalid='ignore'):
- self.assertTrue(eq(x / y, xm / ym))
- self.assertTrue(eq(a10 + y, a10 + ym))
- self.assertTrue(eq(a10 - y, a10 - ym))
- self.assertTrue(eq(a10 * y, a10 * ym))
+ assert_(eq(x / y, xm / ym))
+ assert_(eq(a10 + y, a10 + ym))
+ assert_(eq(a10 - y, a10 - ym))
+ assert_(eq(a10 * y, a10 * ym))
with np.errstate(divide='ignore', invalid='ignore'):
- self.assertTrue(eq(a10 / y, a10 / ym))
- self.assertTrue(eq(x + a10, xm + a10))
- self.assertTrue(eq(x - a10, xm - a10))
- self.assertTrue(eq(x * a10, xm * a10))
- self.assertTrue(eq(x / a10, xm / a10))
- self.assertTrue(eq(x ** 2, xm ** 2))
- self.assertTrue(eq(abs(x) ** 2.5, abs(xm) ** 2.5))
- self.assertTrue(eq(x ** y, xm ** ym))
- self.assertTrue(eq(np.add(x, y), add(xm, ym)))
- self.assertTrue(eq(np.subtract(x, y), subtract(xm, ym)))
- self.assertTrue(eq(np.multiply(x, y), multiply(xm, ym)))
+ assert_(eq(a10 / y, a10 / ym))
+ assert_(eq(x + a10, xm + a10))
+ assert_(eq(x - a10, xm - a10))
+ assert_(eq(x * a10, xm * a10))
+ assert_(eq(x / a10, xm / a10))
+ assert_(eq(x ** 2, xm ** 2))
+ assert_(eq(abs(x) ** 2.5, abs(xm) ** 2.5))
+ assert_(eq(x ** y, xm ** ym))
+ assert_(eq(np.add(x, y), add(xm, ym)))
+ assert_(eq(np.subtract(x, y), subtract(xm, ym)))
+ assert_(eq(np.multiply(x, y), multiply(xm, ym)))
with np.errstate(divide='ignore', invalid='ignore'):
- self.assertTrue(eq(np.divide(x, y), divide(xm, ym)))
+ assert_(eq(np.divide(x, y), divide(xm, ym)))
def test_testMixedArithmetic(self):
na = np.array([1])
ma = array([1])
- self.assertTrue(isinstance(na + ma, MaskedArray))
- self.assertTrue(isinstance(ma + na, MaskedArray))
+ assert_(isinstance(na + ma, MaskedArray))
+ assert_(isinstance(ma + na, MaskedArray))
def test_testUfuncs1(self):
# Test various functions such as sin, cos.
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
- self.assertTrue(eq(np.cos(x), cos(xm)))
- self.assertTrue(eq(np.cosh(x), cosh(xm)))
- self.assertTrue(eq(np.sin(x), sin(xm)))
- self.assertTrue(eq(np.sinh(x), sinh(xm)))
- self.assertTrue(eq(np.tan(x), tan(xm)))
- self.assertTrue(eq(np.tanh(x), tanh(xm)))
+ assert_(eq(np.cos(x), cos(xm)))
+ assert_(eq(np.cosh(x), cosh(xm)))
+ assert_(eq(np.sin(x), sin(xm)))
+ assert_(eq(np.sinh(x), sinh(xm)))
+ assert_(eq(np.tan(x), tan(xm)))
+ assert_(eq(np.tanh(x), tanh(xm)))
with np.errstate(divide='ignore', invalid='ignore'):
- self.assertTrue(eq(np.sqrt(abs(x)), sqrt(xm)))
- self.assertTrue(eq(np.log(abs(x)), log(xm)))
- self.assertTrue(eq(np.log10(abs(x)), log10(xm)))
- self.assertTrue(eq(np.exp(x), exp(xm)))
- self.assertTrue(eq(np.arcsin(z), arcsin(zm)))
- self.assertTrue(eq(np.arccos(z), arccos(zm)))
- self.assertTrue(eq(np.arctan(z), arctan(zm)))
- self.assertTrue(eq(np.arctan2(x, y), arctan2(xm, ym)))
- self.assertTrue(eq(np.absolute(x), absolute(xm)))
- self.assertTrue(eq(np.equal(x, y), equal(xm, ym)))
- self.assertTrue(eq(np.not_equal(x, y), not_equal(xm, ym)))
- self.assertTrue(eq(np.less(x, y), less(xm, ym)))
- self.assertTrue(eq(np.greater(x, y), greater(xm, ym)))
- self.assertTrue(eq(np.less_equal(x, y), less_equal(xm, ym)))
- self.assertTrue(eq(np.greater_equal(x, y), greater_equal(xm, ym)))
- self.assertTrue(eq(np.conjugate(x), conjugate(xm)))
- self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, ym))))
- self.assertTrue(eq(np.concatenate((x, y)), concatenate((x, y))))
- self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, y))))
- self.assertTrue(eq(np.concatenate((x, y, x)), concatenate((x, ym, x))))
+ assert_(eq(np.sqrt(abs(x)), sqrt(xm)))
+ assert_(eq(np.log(abs(x)), log(xm)))
+ assert_(eq(np.log10(abs(x)), log10(xm)))
+ assert_(eq(np.exp(x), exp(xm)))
+ assert_(eq(np.arcsin(z), arcsin(zm)))
+ assert_(eq(np.arccos(z), arccos(zm)))
+ assert_(eq(np.arctan(z), arctan(zm)))
+ assert_(eq(np.arctan2(x, y), arctan2(xm, ym)))
+ assert_(eq(np.absolute(x), absolute(xm)))
+ assert_(eq(np.equal(x, y), equal(xm, ym)))
+ assert_(eq(np.not_equal(x, y), not_equal(xm, ym)))
+ assert_(eq(np.less(x, y), less(xm, ym)))
+ assert_(eq(np.greater(x, y), greater(xm, ym)))
+ assert_(eq(np.less_equal(x, y), less_equal(xm, ym)))
+ assert_(eq(np.greater_equal(x, y), greater_equal(xm, ym)))
+ assert_(eq(np.conjugate(x), conjugate(xm)))
+ assert_(eq(np.concatenate((x, y)), concatenate((xm, ym))))
+ assert_(eq(np.concatenate((x, y)), concatenate((x, y))))
+ assert_(eq(np.concatenate((x, y)), concatenate((xm, y))))
+ assert_(eq(np.concatenate((x, y, x)), concatenate((x, ym, x))))
def test_xtestCount(self):
# Test count
ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
- self.assertTrue(count(ott).dtype.type is np.intp)
- self.assertEqual(3, count(ott))
- self.assertEqual(1, count(1))
- self.assertTrue(eq(0, array(1, mask=[1])))
+ assert_(count(ott).dtype.type is np.intp)
+ assert_equal(3, count(ott))
+ assert_equal(1, count(1))
+ assert_(eq(0, array(1, mask=[1])))
ott = ott.reshape((2, 2))
- self.assertTrue(count(ott).dtype.type is np.intp)
+ assert_(count(ott).dtype.type is np.intp)
assert_(isinstance(count(ott, 0), np.ndarray))
- self.assertTrue(count(ott).dtype.type is np.intp)
- self.assertTrue(eq(3, count(ott)))
+ assert_(count(ott).dtype.type is np.intp)
+ assert_(eq(3, count(ott)))
assert_(getmask(count(ott, 0)) is nomask)
- self.assertTrue(eq([1, 2], count(ott, 0)))
+ assert_(eq([1, 2], count(ott, 0)))
def test_testMinMax(self):
# Test minimum and maximum.
@@ -181,29 +183,29 @@ class TestMa(TestCase):
xmr = ravel(xm)
# true because of careful selection of data
- self.assertTrue(eq(max(xr), maximum.reduce(xmr)))
- self.assertTrue(eq(min(xr), minimum.reduce(xmr)))
+ assert_(eq(max(xr), maximum.reduce(xmr)))
+ assert_(eq(min(xr), minimum.reduce(xmr)))
def test_testAddSumProd(self):
# Test add, sum, product.
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
- self.assertTrue(eq(np.add.reduce(x), add.reduce(x)))
- self.assertTrue(eq(np.add.accumulate(x), add.accumulate(x)))
- self.assertTrue(eq(4, sum(array(4), axis=0)))
- self.assertTrue(eq(4, sum(array(4), axis=0)))
- self.assertTrue(eq(np.sum(x, axis=0), sum(x, axis=0)))
- self.assertTrue(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)))
- self.assertTrue(eq(np.sum(x, 0), sum(x, 0)))
- self.assertTrue(eq(np.product(x, axis=0), product(x, axis=0)))
- self.assertTrue(eq(np.product(x, 0), product(x, 0)))
- self.assertTrue(eq(np.product(filled(xm, 1), axis=0),
+ assert_(eq(np.add.reduce(x), add.reduce(x)))
+ assert_(eq(np.add.accumulate(x), add.accumulate(x)))
+ assert_(eq(4, sum(array(4), axis=0)))
+ assert_(eq(4, sum(array(4), axis=0)))
+ assert_(eq(np.sum(x, axis=0), sum(x, axis=0)))
+ assert_(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)))
+ assert_(eq(np.sum(x, 0), sum(x, 0)))
+ assert_(eq(np.product(x, axis=0), product(x, axis=0)))
+ assert_(eq(np.product(x, 0), product(x, 0)))
+ assert_(eq(np.product(filled(xm, 1), axis=0),
product(xm, axis=0)))
if len(s) > 1:
- self.assertTrue(eq(np.concatenate((x, y), 1),
+ assert_(eq(np.concatenate((x, y), 1),
concatenate((xm, ym), 1)))
- self.assertTrue(eq(np.add.reduce(x, 1), add.reduce(x, 1)))
- self.assertTrue(eq(np.sum(x, 1), sum(x, 1)))
- self.assertTrue(eq(np.product(x, 1), product(x, 1)))
+ assert_(eq(np.add.reduce(x, 1), add.reduce(x, 1)))
+ assert_(eq(np.sum(x, 1), sum(x, 1)))
+ assert_(eq(np.product(x, 1), product(x, 1)))
def test_testCI(self):
# Test of conversions and indexing
@@ -250,9 +252,9 @@ class TestMa(TestCase):
x2 = np.array([1, 'hello', 2, 3], object)
s1 = x1[1]
s2 = x2[1]
- self.assertEqual(type(s2), str)
- self.assertEqual(type(s1), str)
- self.assertEqual(s1, s2)
+ assert_equal(type(s2), str)
+ assert_equal(type(s1), str)
+ assert_equal(s1, s2)
assert_(x1[1:1].shape == (0,))
def test_testCopySize(self):
@@ -260,47 +262,47 @@ class TestMa(TestCase):
n = [0, 0, 1, 0, 0]
m = make_mask(n)
m2 = make_mask(m)
- self.assertTrue(m is m2)
+ assert_(m is m2)
m3 = make_mask(m, copy=1)
- self.assertTrue(m is not m3)
+ assert_(m is not m3)
x1 = np.arange(5)
y1 = array(x1, mask=m)
- self.assertTrue(y1._data is not x1)
- self.assertTrue(allequal(x1, y1._data))
- self.assertTrue(y1.mask is m)
+ assert_(y1._data is not x1)
+ assert_(allequal(x1, y1._data))
+ assert_(y1.mask is m)
y1a = array(y1, copy=0)
- self.assertTrue(y1a.mask is y1.mask)
+ assert_(y1a.mask is y1.mask)
y2 = array(x1, mask=m3, copy=0)
- self.assertTrue(y2.mask is m3)
- self.assertTrue(y2[2] is masked)
+ assert_(y2.mask is m3)
+ assert_(y2[2] is masked)
y2[2] = 9
- self.assertTrue(y2[2] is not masked)
- self.assertTrue(y2.mask is m3)
- self.assertTrue(allequal(y2.mask, 0))
+ assert_(y2[2] is not masked)
+ assert_(y2.mask is m3)
+ assert_(allequal(y2.mask, 0))
y2a = array(x1, mask=m, copy=1)
- self.assertTrue(y2a.mask is not m)
- self.assertTrue(y2a[2] is masked)
+ assert_(y2a.mask is not m)
+ assert_(y2a[2] is masked)
y2a[2] = 9
- self.assertTrue(y2a[2] is not masked)
- self.assertTrue(y2a.mask is not m)
- self.assertTrue(allequal(y2a.mask, 0))
+ assert_(y2a[2] is not masked)
+ assert_(y2a.mask is not m)
+ assert_(allequal(y2a.mask, 0))
y3 = array(x1 * 1.0, mask=m)
- self.assertTrue(filled(y3).dtype is (x1 * 1.0).dtype)
+ assert_(filled(y3).dtype is (x1 * 1.0).dtype)
x4 = arange(4)
x4[2] = masked
y4 = resize(x4, (8,))
- self.assertTrue(eq(concatenate([x4, x4]), y4))
- self.assertTrue(eq(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]))
+ assert_(eq(concatenate([x4, x4]), y4))
+ assert_(eq(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]))
y5 = repeat(x4, (2, 2, 2, 2), axis=0)
- self.assertTrue(eq(y5, [0, 0, 1, 1, 2, 2, 3, 3]))
+ assert_(eq(y5, [0, 0, 1, 1, 2, 2, 3, 3]))
y6 = repeat(x4, 2, axis=0)
- self.assertTrue(eq(y5, y6))
+ assert_(eq(y5, y6))
def test_testPut(self):
# Test of put
@@ -309,46 +311,46 @@ class TestMa(TestCase):
m = make_mask(n)
m2 = m.copy()
x = array(d, mask=m)
- self.assertTrue(x[3] is masked)
- self.assertTrue(x[4] is masked)
+ assert_(x[3] is masked)
+ assert_(x[4] is masked)
x[[1, 4]] = [10, 40]
- self.assertTrue(x.mask is m)
- self.assertTrue(x[3] is masked)
- self.assertTrue(x[4] is not masked)
- self.assertTrue(eq(x, [0, 10, 2, -1, 40]))
+ assert_(x.mask is m)
+ assert_(x[3] is masked)
+ assert_(x[4] is not masked)
+ assert_(eq(x, [0, 10, 2, -1, 40]))
x = array(d, mask=m2, copy=True)
x.put([0, 1, 2], [-1, 100, 200])
- self.assertTrue(x.mask is not m2)
- self.assertTrue(x[3] is masked)
- self.assertTrue(x[4] is masked)
- self.assertTrue(eq(x, [-1, 100, 200, 0, 0]))
+ assert_(x.mask is not m2)
+ assert_(x[3] is masked)
+ assert_(x[4] is masked)
+ assert_(eq(x, [-1, 100, 200, 0, 0]))
def test_testPut2(self):
# Test of put
d = arange(5)
x = array(d, mask=[0, 0, 0, 0, 0])
z = array([10, 40], mask=[1, 0])
- self.assertTrue(x[2] is not masked)
- self.assertTrue(x[3] is not masked)
+ assert_(x[2] is not masked)
+ assert_(x[3] is not masked)
x[2:4] = z
- self.assertTrue(x[2] is masked)
- self.assertTrue(x[3] is not masked)
- self.assertTrue(eq(x, [0, 1, 10, 40, 4]))
+ assert_(x[2] is masked)
+ assert_(x[3] is not masked)
+ assert_(eq(x, [0, 1, 10, 40, 4]))
d = arange(5)
x = array(d, mask=[0, 0, 0, 0, 0])
y = x[2:4]
z = array([10, 40], mask=[1, 0])
- self.assertTrue(x[2] is not masked)
- self.assertTrue(x[3] is not masked)
+ assert_(x[2] is not masked)
+ assert_(x[3] is not masked)
y[:] = z
- self.assertTrue(y[0] is masked)
- self.assertTrue(y[1] is not masked)
- self.assertTrue(eq(y, [10, 40]))
- self.assertTrue(x[2] is masked)
- self.assertTrue(x[3] is not masked)
- self.assertTrue(eq(x, [0, 1, 10, 40, 4]))
+ assert_(y[0] is masked)
+ assert_(y[1] is not masked)
+ assert_(eq(y, [10, 40]))
+ assert_(x[2] is masked)
+ assert_(x[3] is not masked)
+ assert_(eq(x, [0, 1, 10, 40, 4]))
def test_testMaPut(self):
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
@@ -555,147 +557,147 @@ class TestMa(TestCase):
# Test of masked element
xx = arange(6)
xx[1] = masked
- self.assertTrue(str(masked) == '--')
- self.assertTrue(xx[1] is masked)
- self.assertEqual(filled(xx[1], 0), 0)
+ assert_(str(masked) == '--')
+ assert_(xx[1] is masked)
+ assert_equal(filled(xx[1], 0), 0)
def test_testAverage1(self):
# Test of average.
ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
- self.assertTrue(eq(2.0, average(ott, axis=0)))
- self.assertTrue(eq(2.0, average(ott, weights=[1., 1., 2., 1.])))
+ assert_(eq(2.0, average(ott, axis=0)))
+ assert_(eq(2.0, average(ott, weights=[1., 1., 2., 1.])))
result, wts = average(ott, weights=[1., 1., 2., 1.], returned=1)
- self.assertTrue(eq(2.0, result))
- self.assertTrue(wts == 4.0)
+ assert_(eq(2.0, result))
+ assert_(wts == 4.0)
ott[:] = masked
- self.assertTrue(average(ott, axis=0) is masked)
+ assert_(average(ott, axis=0) is masked)
ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0])
ott = ott.reshape(2, 2)
ott[:, 1] = masked
- self.assertTrue(eq(average(ott, axis=0), [2.0, 0.0]))
- self.assertTrue(average(ott, axis=1)[0] is masked)
- self.assertTrue(eq([2., 0.], average(ott, axis=0)))
+ assert_(eq(average(ott, axis=0), [2.0, 0.0]))
+ assert_(average(ott, axis=1)[0] is masked)
+ assert_(eq([2., 0.], average(ott, axis=0)))
result, wts = average(ott, axis=0, returned=1)
- self.assertTrue(eq(wts, [1., 0.]))
+ assert_(eq(wts, [1., 0.]))
def test_testAverage2(self):
# More tests of average.
w1 = [0, 1, 1, 1, 1, 0]
w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
x = arange(6)
- self.assertTrue(allclose(average(x, axis=0), 2.5))
- self.assertTrue(allclose(average(x, axis=0, weights=w1), 2.5))
+ assert_(allclose(average(x, axis=0), 2.5))
+ assert_(allclose(average(x, axis=0, weights=w1), 2.5))
y = array([arange(6), 2.0 * arange(6)])
- self.assertTrue(allclose(average(y, None),
+ assert_(allclose(average(y, None),
np.add.reduce(np.arange(6)) * 3. / 12.))
- self.assertTrue(allclose(average(y, axis=0), np.arange(6) * 3. / 2.))
- self.assertTrue(allclose(average(y, axis=1),
+ assert_(allclose(average(y, axis=0), np.arange(6) * 3. / 2.))
+ assert_(allclose(average(y, axis=1),
[average(x, axis=0), average(x, axis=0)*2.0]))
- self.assertTrue(allclose(average(y, None, weights=w2), 20. / 6.))
- self.assertTrue(allclose(average(y, axis=0, weights=w2),
+ assert_(allclose(average(y, None, weights=w2), 20. / 6.))
+ assert_(allclose(average(y, axis=0, weights=w2),
[0., 1., 2., 3., 4., 10.]))
- self.assertTrue(allclose(average(y, axis=1),
+ assert_(allclose(average(y, axis=1),
[average(x, axis=0), average(x, axis=0)*2.0]))
m1 = zeros(6)
m2 = [0, 0, 1, 1, 0, 0]
m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
m4 = ones(6)
m5 = [0, 1, 1, 1, 1, 1]
- self.assertTrue(allclose(average(masked_array(x, m1), axis=0), 2.5))
- self.assertTrue(allclose(average(masked_array(x, m2), axis=0), 2.5))
- self.assertTrue(average(masked_array(x, m4), axis=0) is masked)
- self.assertEqual(average(masked_array(x, m5), axis=0), 0.0)
- self.assertEqual(count(average(masked_array(x, m4), axis=0)), 0)
+ assert_(allclose(average(masked_array(x, m1), axis=0), 2.5))
+ assert_(allclose(average(masked_array(x, m2), axis=0), 2.5))
+ assert_(average(masked_array(x, m4), axis=0) is masked)
+ assert_equal(average(masked_array(x, m5), axis=0), 0.0)
+ assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
z = masked_array(y, m3)
- self.assertTrue(allclose(average(z, None), 20. / 6.))
- self.assertTrue(allclose(average(z, axis=0),
+ assert_(allclose(average(z, None), 20. / 6.))
+ assert_(allclose(average(z, axis=0),
[0., 1., 99., 99., 4.0, 7.5]))
- self.assertTrue(allclose(average(z, axis=1), [2.5, 5.0]))
- self.assertTrue(allclose(average(z, axis=0, weights=w2),
+ assert_(allclose(average(z, axis=1), [2.5, 5.0]))
+ assert_(allclose(average(z, axis=0, weights=w2),
[0., 1., 99., 99., 4.0, 10.0]))
a = arange(6)
b = arange(6) * 3
r1, w1 = average([[a, b], [b, a]], axis=1, returned=1)
- self.assertEqual(shape(r1), shape(w1))
- self.assertEqual(r1.shape, w1.shape)
+ assert_equal(shape(r1), shape(w1))
+ assert_equal(r1.shape, w1.shape)
r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=1)
- self.assertEqual(shape(w2), shape(r2))
+ assert_equal(shape(w2), shape(r2))
r2, w2 = average(ones((2, 2, 3)), returned=1)
- self.assertEqual(shape(w2), shape(r2))
+ assert_equal(shape(w2), shape(r2))
r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=1)
- self.assertTrue(shape(w2) == shape(r2))
+ assert_(shape(w2) == shape(r2))
a2d = array([[1, 2], [0, 4]], float)
a2dm = masked_array(a2d, [[0, 0], [1, 0]])
a2da = average(a2d, axis=0)
- self.assertTrue(eq(a2da, [0.5, 3.0]))
+ assert_(eq(a2da, [0.5, 3.0]))
a2dma = average(a2dm, axis=0)
- self.assertTrue(eq(a2dma, [1.0, 3.0]))
+ assert_(eq(a2dma, [1.0, 3.0]))
a2dma = average(a2dm, axis=None)
- self.assertTrue(eq(a2dma, 7. / 3.))
+ assert_(eq(a2dma, 7. / 3.))
a2dma = average(a2dm, axis=1)
- self.assertTrue(eq(a2dma, [1.5, 4.0]))
+ assert_(eq(a2dma, [1.5, 4.0]))
def test_testToPython(self):
- self.assertEqual(1, int(array(1)))
- self.assertEqual(1.0, float(array(1)))
- self.assertEqual(1, int(array([[[1]]])))
- self.assertEqual(1.0, float(array([[1]])))
- self.assertRaises(TypeError, float, array([1, 1]))
- self.assertRaises(ValueError, bool, array([0, 1]))
- self.assertRaises(ValueError, bool, array([0, 0], mask=[0, 1]))
+ assert_equal(1, int(array(1)))
+ assert_equal(1.0, float(array(1)))
+ assert_equal(1, int(array([[[1]]])))
+ assert_equal(1.0, float(array([[1]])))
+ assert_raises(TypeError, float, array([1, 1]))
+ assert_raises(ValueError, bool, array([0, 1]))
+ assert_raises(ValueError, bool, array([0, 0], mask=[0, 1]))
def test_testScalarArithmetic(self):
xm = array(0, mask=1)
#TODO FIXME: Find out what the following raises a warning in r8247
with np.errstate(divide='ignore'):
- self.assertTrue((1 / array(0)).mask)
- self.assertTrue((1 + xm).mask)
- self.assertTrue((-xm).mask)
- self.assertTrue((-xm).mask)
- self.assertTrue(maximum(xm, xm).mask)
- self.assertTrue(minimum(xm, xm).mask)
- self.assertTrue(xm.filled().dtype is xm._data.dtype)
+ assert_((1 / array(0)).mask)
+ assert_((1 + xm).mask)
+ assert_((-xm).mask)
+ assert_((-xm).mask)
+ assert_(maximum(xm, xm).mask)
+ assert_(minimum(xm, xm).mask)
+ assert_(xm.filled().dtype is xm._data.dtype)
x = array(0, mask=0)
- self.assertTrue(x.filled() == x._data)
- self.assertEqual(str(xm), str(masked_print_option))
+ assert_(x.filled() == x._data)
+ assert_equal(str(xm), str(masked_print_option))
def test_testArrayMethods(self):
a = array([1, 3, 2])
- self.assertTrue(eq(a.any(), a._data.any()))
- self.assertTrue(eq(a.all(), a._data.all()))
- self.assertTrue(eq(a.argmax(), a._data.argmax()))
- self.assertTrue(eq(a.argmin(), a._data.argmin()))
- self.assertTrue(eq(a.choose(0, 1, 2, 3, 4),
+ assert_(eq(a.any(), a._data.any()))
+ assert_(eq(a.all(), a._data.all()))
+ assert_(eq(a.argmax(), a._data.argmax()))
+ assert_(eq(a.argmin(), a._data.argmin()))
+ assert_(eq(a.choose(0, 1, 2, 3, 4),
a._data.choose(0, 1, 2, 3, 4)))
- self.assertTrue(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])))
- self.assertTrue(eq(a.conj(), a._data.conj()))
- self.assertTrue(eq(a.conjugate(), a._data.conjugate()))
+ assert_(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])))
+ assert_(eq(a.conj(), a._data.conj()))
+ assert_(eq(a.conjugate(), a._data.conjugate()))
m = array([[1, 2], [3, 4]])
- self.assertTrue(eq(m.diagonal(), m._data.diagonal()))
- self.assertTrue(eq(a.sum(), a._data.sum()))
- self.assertTrue(eq(a.take([1, 2]), a._data.take([1, 2])))
- self.assertTrue(eq(m.transpose(), m._data.transpose()))
+ assert_(eq(m.diagonal(), m._data.diagonal()))
+ assert_(eq(a.sum(), a._data.sum()))
+ assert_(eq(a.take([1, 2]), a._data.take([1, 2])))
+ assert_(eq(m.transpose(), m._data.transpose()))
def test_testArrayAttributes(self):
a = array([1, 3, 2])
- self.assertEqual(a.ndim, 1)
+ assert_equal(a.ndim, 1)
def test_testAPI(self):
- self.assertFalse([m for m in dir(np.ndarray)
- if m not in dir(MaskedArray) and
- not m.startswith('_')])
+ assert_(not [m for m in dir(np.ndarray)
+ if m not in dir(MaskedArray) and
+ not m.startswith('_')])
def test_testSingleElementSubscript(self):
a = array([1, 3, 2])
b = array([1, 3, 2], mask=[1, 0, 1])
- self.assertEqual(a[0].shape, ())
- self.assertEqual(b[0].shape, ())
- self.assertEqual(b[1].shape, ())
+ assert_equal(a[0].shape, ())
+ assert_equal(b[0].shape, ())
+ assert_equal(b[1].shape, ())
-class TestUfuncs(TestCase):
- def setUp(self):
+class TestUfuncs(object):
+ def setup(self):
self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6),
array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),)
@@ -733,35 +735,35 @@ class TestUfuncs(TestCase):
np.seterr(divide='ignore')
ur = uf(*args)
mr = mf(*args)
- self.assertTrue(eq(ur.filled(0), mr.filled(0), f))
- self.assertTrue(eqmask(ur.mask, mr.mask))
+ assert_(eq(ur.filled(0), mr.filled(0), f))
+ assert_(eqmask(ur.mask, mr.mask))
def test_reduce(self):
a = self.d[0]
- self.assertFalse(alltrue(a, axis=0))
- self.assertTrue(sometrue(a, axis=0))
- self.assertEqual(sum(a[:3], axis=0), 0)
- self.assertEqual(product(a, axis=0), 0)
+ assert_(not alltrue(a, axis=0))
+ assert_(sometrue(a, axis=0))
+ assert_equal(sum(a[:3], axis=0), 0)
+ assert_equal(product(a, axis=0), 0)
def test_minmax(self):
a = arange(1, 13).reshape(3, 4)
amask = masked_where(a < 5, a)
- self.assertEqual(amask.max(), a.max())
- self.assertEqual(amask.min(), 5)
- self.assertTrue((amask.max(0) == a.max(0)).all())
- self.assertTrue((amask.min(0) == [5, 6, 7, 8]).all())
- self.assertTrue(amask.max(1)[0].mask)
- self.assertTrue(amask.min(1)[0].mask)
+ assert_equal(amask.max(), a.max())
+ assert_equal(amask.min(), 5)
+ assert_((amask.max(0) == a.max(0)).all())
+ assert_((amask.min(0) == [5, 6, 7, 8]).all())
+ assert_(amask.max(1)[0].mask)
+ assert_(amask.min(1)[0].mask)
def test_nonzero(self):
for t in "?bhilqpBHILQPfdgFDGO":
x = array([1, 0, 2, 0], mask=[0, 0, 1, 1])
- self.assertTrue(eq(nonzero(x), [0]))
+ assert_(eq(nonzero(x), [0]))
-class TestArrayMethods(TestCase):
+class TestArrayMethods(object):
- def setUp(self):
+ def setup(self):
x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928,
8.43, 7.78, 9.865, 5.878, 8.979, 4.732,
3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
@@ -786,63 +788,63 @@ class TestArrayMethods(TestCase):
def test_trace(self):
(x, X, XX, m, mx, mX, mXX,) = self.d
mXdiag = mX.diagonal()
- self.assertEqual(mX.trace(), mX.diagonal().compressed().sum())
- self.assertTrue(eq(mX.trace(),
+ assert_equal(mX.trace(), mX.diagonal().compressed().sum())
+ assert_(eq(mX.trace(),
X.trace() - sum(mXdiag.mask * X.diagonal(),
axis=0)))
def test_clip(self):
(x, X, XX, m, mx, mX, mXX,) = self.d
clipped = mx.clip(2, 8)
- self.assertTrue(eq(clipped.mask, mx.mask))
- self.assertTrue(eq(clipped._data, x.clip(2, 8)))
- self.assertTrue(eq(clipped._data, mx._data.clip(2, 8)))
+ assert_(eq(clipped.mask, mx.mask))
+ assert_(eq(clipped._data, x.clip(2, 8)))
+ assert_(eq(clipped._data, mx._data.clip(2, 8)))
def test_ptp(self):
(x, X, XX, m, mx, mX, mXX,) = self.d
(n, m) = X.shape
- self.assertEqual(mx.ptp(), mx.compressed().ptp())
+ assert_equal(mx.ptp(), mx.compressed().ptp())
rows = np.zeros(n, np.float_)
cols = np.zeros(m, np.float_)
for k in range(m):
cols[k] = mX[:, k].compressed().ptp()
for k in range(n):
rows[k] = mX[k].compressed().ptp()
- self.assertTrue(eq(mX.ptp(0), cols))
- self.assertTrue(eq(mX.ptp(1), rows))
+ assert_(eq(mX.ptp(0), cols))
+ assert_(eq(mX.ptp(1), rows))
def test_swapaxes(self):
(x, X, XX, m, mx, mX, mXX,) = self.d
mXswapped = mX.swapaxes(0, 1)
- self.assertTrue(eq(mXswapped[-1], mX[:, -1]))
+ assert_(eq(mXswapped[-1], mX[:, -1]))
mXXswapped = mXX.swapaxes(0, 2)
- self.assertEqual(mXXswapped.shape, (2, 2, 3, 3))
+ assert_equal(mXXswapped.shape, (2, 2, 3, 3))
def test_cumprod(self):
(x, X, XX, m, mx, mX, mXX,) = self.d
mXcp = mX.cumprod(0)
- self.assertTrue(eq(mXcp._data, mX.filled(1).cumprod(0)))
+ assert_(eq(mXcp._data, mX.filled(1).cumprod(0)))
mXcp = mX.cumprod(1)
- self.assertTrue(eq(mXcp._data, mX.filled(1).cumprod(1)))
+ assert_(eq(mXcp._data, mX.filled(1).cumprod(1)))
def test_cumsum(self):
(x, X, XX, m, mx, mX, mXX,) = self.d
mXcp = mX.cumsum(0)
- self.assertTrue(eq(mXcp._data, mX.filled(0).cumsum(0)))
+ assert_(eq(mXcp._data, mX.filled(0).cumsum(0)))
mXcp = mX.cumsum(1)
- self.assertTrue(eq(mXcp._data, mX.filled(0).cumsum(1)))
+ assert_(eq(mXcp._data, mX.filled(0).cumsum(1)))
def test_varstd(self):
(x, X, XX, m, mx, mX, mXX,) = self.d
- self.assertTrue(eq(mX.var(axis=None), mX.compressed().var()))
- self.assertTrue(eq(mX.std(axis=None), mX.compressed().std()))
- self.assertTrue(eq(mXX.var(axis=3).shape, XX.var(axis=3).shape))
- self.assertTrue(eq(mX.var().shape, X.var().shape))
+ assert_(eq(mX.var(axis=None), mX.compressed().var()))
+ assert_(eq(mX.std(axis=None), mX.compressed().std()))
+ assert_(eq(mXX.var(axis=3).shape, XX.var(axis=3).shape))
+ assert_(eq(mX.var().shape, X.var().shape))
(mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1))
for k in range(6):
- self.assertTrue(eq(mXvar1[k], mX[k].compressed().var()))
- self.assertTrue(eq(mXvar0[k], mX[:, k].compressed().var()))
- self.assertTrue(eq(np.sqrt(mXvar0[k]),
+ assert_(eq(mXvar1[k], mX[k].compressed().var()))
+ assert_(eq(mXvar0[k], mX[:, k].compressed().var()))
+ assert_(eq(np.sqrt(mXvar0[k]),
mX[:, k].compressed().std()))
diff --git a/numpy/ma/tests/test_regression.py b/numpy/ma/tests/test_regression.py
index d1fb2bb2b..34dd29d92 100644
--- a/numpy/ma/tests/test_regression.py
+++ b/numpy/ma/tests/test_regression.py
@@ -3,14 +3,15 @@ from __future__ import division, absolute_import, print_function
import warnings
import numpy as np
-from numpy.testing import (assert_, TestCase, assert_array_equal,
- assert_allclose, run_module_suite,
- suppress_warnings)
+from numpy.testing import (
+ assert_, assert_array_equal, assert_allclose, run_module_suite,
+ suppress_warnings
+ )
rlevel = 1
-class TestRegression(TestCase):
+class TestRegression(object):
def test_masked_array_create(self,level=rlevel):
# Ticket #17
x = np.ma.masked_array([0, 1, 2, 3, 0, 4, 5, 6],
diff --git a/numpy/ma/tests/test_subclassing.py b/numpy/ma/tests/test_subclassing.py
index b2995fd57..e59dd4656 100644
--- a/numpy/ma/tests/test_subclassing.py
+++ b/numpy/ma/tests/test_subclassing.py
@@ -9,7 +9,7 @@
from __future__ import division, absolute_import, print_function
import numpy as np
-from numpy.testing import TestCase, run_module_suite, assert_raises, dec
+from numpy.testing import run_module_suite, assert_, assert_raises, dec
from numpy.ma.testutils import assert_equal
from numpy.ma.core import (
array, arange, masked, MaskedArray, masked_array, log, add, hypot,
@@ -172,10 +172,10 @@ class ComplicatedSubArray(SubArray):
return obj
-class TestSubclassing(TestCase):
+class TestSubclassing(object):
# Test suite for masked subclasses of ndarray.
- def setUp(self):
+ def setup(self):
x = np.arange(5, dtype='float')
mx = mmatrix(x, mask=[0, 1, 0, 0, 0])
self.data = (x, mx)
@@ -186,41 +186,41 @@ class TestSubclassing(TestCase):
m = [0, 0, 1, 0, 0]
xsub = SubArray(x)
xmsub = masked_array(xsub, mask=m)
- self.assertTrue(isinstance(xmsub, MaskedArray))
+ assert_(isinstance(xmsub, MaskedArray))
assert_equal(xmsub._data, xsub)
- self.assertTrue(isinstance(xmsub._data, SubArray))
+ assert_(isinstance(xmsub._data, SubArray))
def test_maskedarray_subclassing(self):
# Tests subclassing MaskedArray
(x, mx) = self.data
- self.assertTrue(isinstance(mx._data, np.matrix))
+ assert_(isinstance(mx._data, np.matrix))
def test_masked_unary_operations(self):
# Tests masked_unary_operation
(x, mx) = self.data
with np.errstate(divide='ignore'):
- self.assertTrue(isinstance(log(mx), mmatrix))
+ assert_(isinstance(log(mx), mmatrix))
assert_equal(log(x), np.log(x))
def test_masked_binary_operations(self):
# Tests masked_binary_operation
(x, mx) = self.data
# Result should be a mmatrix
- self.assertTrue(isinstance(add(mx, mx), mmatrix))
- self.assertTrue(isinstance(add(mx, x), mmatrix))
+ assert_(isinstance(add(mx, mx), mmatrix))
+ assert_(isinstance(add(mx, x), mmatrix))
# Result should work
assert_equal(add(mx, x), mx+x)
- self.assertTrue(isinstance(add(mx, mx)._data, np.matrix))
- self.assertTrue(isinstance(add.outer(mx, mx), mmatrix))
- self.assertTrue(isinstance(hypot(mx, mx), mmatrix))
- self.assertTrue(isinstance(hypot(mx, x), mmatrix))
+ assert_(isinstance(add(mx, mx)._data, np.matrix))
+ assert_(isinstance(add.outer(mx, mx), mmatrix))
+ assert_(isinstance(hypot(mx, mx), mmatrix))
+ assert_(isinstance(hypot(mx, x), mmatrix))
def test_masked_binary_operations2(self):
# Tests domained_masked_binary_operation
(x, mx) = self.data
xmx = masked_array(mx.data.__array__(), mask=mx.mask)
- self.assertTrue(isinstance(divide(mx, mx), mmatrix))
- self.assertTrue(isinstance(divide(mx, x), mmatrix))
+ assert_(isinstance(divide(mx, mx), mmatrix))
+ assert_(isinstance(divide(mx, x), mmatrix))
assert_equal(divide(mx, mx), divide(xmx, xmx))
def test_attributepropagation(self):
@@ -229,22 +229,22 @@ class TestSubclassing(TestCase):
ym = msubarray(x)
#
z = (my+1)
- self.assertTrue(isinstance(z, MaskedArray))
- self.assertTrue(not isinstance(z, MSubArray))
- self.assertTrue(isinstance(z._data, SubArray))
+ assert_(isinstance(z, MaskedArray))
+ assert_(not isinstance(z, MSubArray))
+ assert_(isinstance(z._data, SubArray))
assert_equal(z._data.info, {})
#
z = (ym+1)
- self.assertTrue(isinstance(z, MaskedArray))
- self.assertTrue(isinstance(z, MSubArray))
- self.assertTrue(isinstance(z._data, SubArray))
- self.assertTrue(z._data.info['added'] > 0)
+ assert_(isinstance(z, MaskedArray))
+ assert_(isinstance(z, MSubArray))
+ assert_(isinstance(z._data, SubArray))
+ assert_(z._data.info['added'] > 0)
# Test that inplace methods from data get used (gh-4617)
ym += 1
- self.assertTrue(isinstance(ym, MaskedArray))
- self.assertTrue(isinstance(ym, MSubArray))
- self.assertTrue(isinstance(ym._data, SubArray))
- self.assertTrue(ym._data.info['iadded'] > 0)
+ assert_(isinstance(ym, MaskedArray))
+ assert_(isinstance(ym, MSubArray))
+ assert_(isinstance(ym._data, SubArray))
+ assert_(ym._data.info['iadded'] > 0)
#
ym._set_mask([1, 0, 0, 0, 1])
assert_equal(ym._mask, [1, 0, 0, 0, 1])
@@ -253,7 +253,7 @@ class TestSubclassing(TestCase):
#
xsub = subarray(x, info={'name':'x'})
mxsub = masked_array(xsub)
- self.assertTrue(hasattr(mxsub, 'info'))
+ assert_(hasattr(mxsub, 'info'))
assert_equal(mxsub.info, xsub.info)
def test_subclasspreservation(self):
@@ -264,22 +264,22 @@ class TestSubclassing(TestCase):
xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
#
mxsub = masked_array(xsub, subok=False)
- self.assertTrue(not isinstance(mxsub, MSubArray))
- self.assertTrue(isinstance(mxsub, MaskedArray))
+ assert_(not isinstance(mxsub, MSubArray))
+ assert_(isinstance(mxsub, MaskedArray))
assert_equal(mxsub._mask, m)
#
mxsub = asarray(xsub)
- self.assertTrue(not isinstance(mxsub, MSubArray))
- self.assertTrue(isinstance(mxsub, MaskedArray))
+ assert_(not isinstance(mxsub, MSubArray))
+ assert_(isinstance(mxsub, MaskedArray))
assert_equal(mxsub._mask, m)
#
mxsub = masked_array(xsub, subok=True)
- self.assertTrue(isinstance(mxsub, MSubArray))
+ assert_(isinstance(mxsub, MSubArray))
assert_equal(mxsub.info, xsub.info)
assert_equal(mxsub._mask, xsub._mask)
#
mxsub = asanyarray(xsub)
- self.assertTrue(isinstance(mxsub, MSubArray))
+ assert_(isinstance(mxsub, MSubArray))
assert_equal(mxsub.info, xsub.info)
assert_equal(mxsub._mask, m)
@@ -290,21 +290,21 @@ class TestSubclassing(TestCase):
mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
# getter should return a ComplicatedSubArray, even for single item
# first check we wrote ComplicatedSubArray correctly
- self.assertTrue(isinstance(xcsub[1], ComplicatedSubArray))
- self.assertTrue(isinstance(xcsub[1,...], ComplicatedSubArray))
- self.assertTrue(isinstance(xcsub[1:4], ComplicatedSubArray))
+ assert_(isinstance(xcsub[1], ComplicatedSubArray))
+ assert_(isinstance(xcsub[1,...], ComplicatedSubArray))
+ assert_(isinstance(xcsub[1:4], ComplicatedSubArray))
# now that it propagates inside the MaskedArray
- self.assertTrue(isinstance(mxcsub[1], ComplicatedSubArray))
- self.assertTrue(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
- self.assertTrue(mxcsub[0] is masked)
- self.assertTrue(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
- self.assertTrue(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
+ assert_(isinstance(mxcsub[1], ComplicatedSubArray))
+ assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
+ assert_(mxcsub[0] is masked)
+ assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
+ assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
# also for flattened version (which goes via MaskedIterator)
- self.assertTrue(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
- self.assertTrue(mxcsub.flat[0] is masked)
- self.assertTrue(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
+ assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
+ assert_(mxcsub.flat[0] is masked)
+ assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
# setter should only work with ComplicatedSubArray input
# first check we wrote ComplicatedSubArray correctly
@@ -325,21 +325,21 @@ class TestSubclassing(TestCase):
xcsub = ComplicatedSubArray(x)
mxcsub_nomask = masked_array(xcsub)
- self.assertTrue(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
- self.assertTrue(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))
+ assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
+ assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))
- self.assertTrue(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
- self.assertTrue(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
+ assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
+ assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
def test_subclass_repr(self):
"""test that repr uses the name of the subclass
and 'array' for np.ndarray"""
x = np.arange(5)
mx = masked_array(x, mask=[True, False, True, False, False])
- self.assertTrue(repr(mx).startswith('masked_array'))
+ assert_(repr(mx).startswith('masked_array'))
xsub = SubArray(x)
mxsub = masked_array(xsub, mask=[True, False, True, False, False])
- self.assertTrue(repr(mxsub).startswith(
+ assert_(repr(mxsub).startswith(
'masked_{0}(data = [-- 1 -- 3 4]'.format(SubArray.__name__)))
def test_subclass_str(self):
@@ -348,13 +348,13 @@ class TestSubclassing(TestCase):
x = np.arange(5)
xsub = SubArray(x)
mxsub = masked_array(xsub, mask=[True, False, True, False, False])
- self.assertTrue(str(mxsub) == '[-- 1 -- 3 4]')
+ assert_(str(mxsub) == '[-- 1 -- 3 4]')
xcsub = ComplicatedSubArray(x)
assert_raises(ValueError, xcsub.__setitem__, 0,
np.ma.core.masked_print_option)
mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
- self.assertTrue(str(mxcsub) == 'myprefix [-- 1 -- 3 4] mypostfix')
+ assert_(str(mxcsub) == 'myprefix [-- 1 -- 3 4] mypostfix')
def test_pure_subclass_info_preservation(self):
# Test that ufuncs and methods conserve extra information consistently;
@@ -362,11 +362,11 @@ class TestSubclassing(TestCase):
arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
diff1 = np.subtract(arr1, arr2)
- self.assertTrue('info' in diff1._optinfo)
- self.assertTrue(diff1._optinfo['info'] == 'test')
+ assert_('info' in diff1._optinfo)
+ assert_(diff1._optinfo['info'] == 'test')
diff2 = arr1 - arr2
- self.assertTrue('info' in diff2._optinfo)
- self.assertTrue(diff2._optinfo['info'] == 'test')
+ assert_('info' in diff2._optinfo)
+ assert_(diff2._optinfo['info'] == 'test')
###############################################################################