summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--numpy/lib/twodim_base.pyi265
-rw-r--r--numpy/typing/tests/data/fail/twodim_base.py37
-rw-r--r--numpy/typing/tests/data/reveal/twodim_base.py72
3 files changed, 353 insertions, 21 deletions
diff --git a/numpy/lib/twodim_base.pyi b/numpy/lib/twodim_base.pyi
index 79b9511b8..007338d77 100644
--- a/numpy/lib/twodim_base.pyi
+++ b/numpy/lib/twodim_base.pyi
@@ -1,32 +1,255 @@
-from typing import List, Optional, Any
+from typing import (
+ Any,
+ Callable,
+ List,
+ Sequence,
+ overload,
+ Tuple,
+ Type,
+ TypeVar,
+ Union,
+)
-from numpy import ndarray, _OrderCF
-from numpy.typing import ArrayLike, DTypeLike
+from numpy import (
+ ndarray,
+ dtype,
+ generic,
+ number,
+ bool_,
+ timedelta64,
+ datetime64,
+ int_,
+ intp,
+ float64,
+ signedinteger,
+ floating,
+ complexfloating,
+ object_,
+ _OrderCF,
+)
+
+from numpy.typing import (
+ DTypeLike,
+ _SupportsDType,
+ ArrayLike,
+ NDArray,
+ _NestedSequence,
+ _SupportsArray,
+ _ArrayLikeInt_co,
+ _ArrayLikeFloat_co,
+ _ArrayLikeComplex_co,
+ _ArrayLikeObject_co,
+)
+
+_T = TypeVar("_T")
+_SCT = TypeVar("_SCT", bound=generic)
+
+# The returned arrays dtype must be compatible with `np.equal`
+_MaskFunc = Callable[
+ [NDArray[int_], _T],
+ NDArray[Union[number[Any], bool_, timedelta64, datetime64, object_]],
+]
+
+_DTypeLike = Union[
+ Type[_SCT],
+ dtype[_SCT],
+ _SupportsDType[dtype[_SCT]],
+]
+_ArrayLike = _NestedSequence[_SupportsArray[dtype[_SCT]]]
__all__: List[str]
-def fliplr(m): ...
-def flipud(m): ...
+@overload
+def fliplr(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
+@overload
+def fliplr(m: ArrayLike) -> NDArray[Any]: ...
+
+@overload
+def flipud(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
+@overload
+def flipud(m: ArrayLike) -> NDArray[Any]: ...
+@overload
def eye(
N: int,
- M: Optional[int] = ...,
+ M: None | int = ...,
+ k: int = ...,
+ dtype: None = ...,
+ order: _OrderCF = ...,
+ *,
+ like: None | ArrayLike = ...,
+) -> NDArray[float64]: ...
+@overload
+def eye(
+ N: int,
+ M: None | int = ...,
+ k: int = ...,
+ dtype: _DTypeLike[_SCT] = ...,
+ order: _OrderCF = ...,
+ *,
+ like: None | ArrayLike = ...,
+) -> NDArray[_SCT]: ...
+@overload
+def eye(
+ N: int,
+ M: None | int = ...,
k: int = ...,
dtype: DTypeLike = ...,
order: _OrderCF = ...,
*,
- like: Optional[ArrayLike] = ...
-) -> ndarray[Any, Any]: ...
-
-def diag(v, k=...): ...
-def diagflat(v, k=...): ...
-def tri(N, M=..., k=..., dtype = ..., *, like=...): ...
-def tril(m, k=...): ...
-def triu(m, k=...): ...
-def vander(x, N=..., increasing=...): ...
-def histogram2d(x, y, bins=..., range=..., normed=..., weights=..., density=...): ...
-def mask_indices(n, mask_func, k=...): ...
-def tril_indices(n, k=..., m=...): ...
-def tril_indices_from(arr, k=...): ...
-def triu_indices(n, k=..., m=...): ...
-def triu_indices_from(arr, k=...): ...
+ like: None | ArrayLike = ...,
+) -> NDArray[Any]: ...
+
+@overload
+def diag(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
+@overload
+def diag(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
+
+@overload
+def diagflat(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
+@overload
+def diagflat(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
+
+@overload
+def tri(
+ N: int,
+ M: None | int = ...,
+ k: int = ...,
+ dtype: None = ...,
+ *,
+ like: None | ArrayLike = ...
+) -> NDArray[float64]: ...
+@overload
+def tri(
+ N: int,
+ M: None | int = ...,
+ k: int = ...,
+ dtype: _DTypeLike[_SCT] = ...,
+ *,
+ like: None | ArrayLike = ...
+) -> NDArray[_SCT]: ...
+@overload
+def tri(
+ N: int,
+ M: None | int = ...,
+ k: int = ...,
+ dtype: DTypeLike = ...,
+ *,
+ like: None | ArrayLike = ...
+) -> NDArray[Any]: ...
+
+@overload
+def tril(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
+@overload
+def tril(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
+
+@overload
+def triu(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ...
+@overload
+def triu(v: ArrayLike, k: int = ...) -> NDArray[Any]: ...
+
+@overload
+def vander( # type: ignore[misc]
+ x: _ArrayLikeInt_co,
+ N: None | int = ...,
+ increasing: bool = ...,
+) -> NDArray[signedinteger[Any]]: ...
+@overload
+def vander( # type: ignore[misc]
+ x: _ArrayLikeFloat_co,
+ N: None | int = ...,
+ increasing: bool = ...,
+) -> NDArray[floating[Any]]: ...
+@overload
+def vander(
+ x: _ArrayLikeComplex_co,
+ N: None | int = ...,
+ increasing: bool = ...,
+) -> NDArray[complexfloating[Any, Any]]: ...
+@overload
+def vander(
+ x: _ArrayLikeObject_co,
+ N: None | int = ...,
+ increasing: bool = ...,
+) -> NDArray[object_]: ...
+
+@overload
+def histogram2d( # type: ignore[misc]
+ x: _ArrayLikeFloat_co,
+ y: _ArrayLikeFloat_co,
+ bins: int | Sequence[int] = ...,
+ range: None | _ArrayLikeFloat_co = ...,
+ normed: None | bool = ...,
+ weights: None | _ArrayLikeFloat_co = ...,
+ density: None | bool = ...,
+) -> Tuple[
+ NDArray[float64],
+ NDArray[floating[Any]],
+ NDArray[floating[Any]],
+]: ...
+@overload
+def histogram2d(
+ x: _ArrayLikeComplex_co,
+ y: _ArrayLikeComplex_co,
+ bins: int | Sequence[int] = ...,
+ range: None | _ArrayLikeFloat_co = ...,
+ normed: None | bool = ...,
+ weights: None | _ArrayLikeFloat_co = ...,
+ density: None | bool = ...,
+) -> Tuple[
+ NDArray[float64],
+ NDArray[complexfloating[Any, Any]],
+ NDArray[complexfloating[Any, Any]],
+]: ...
+@overload # TODO: Sort out `bins`
+def histogram2d(
+ x: _ArrayLikeComplex_co,
+ y: _ArrayLikeComplex_co,
+ bins: Sequence[_ArrayLikeInt_co],
+ range: None | _ArrayLikeFloat_co = ...,
+ normed: None | bool = ...,
+ weights: None | _ArrayLikeFloat_co = ...,
+ density: None | bool = ...,
+) -> Tuple[
+ NDArray[float64],
+ NDArray[Any],
+ NDArray[Any],
+]: ...
+
+# NOTE: we're assuming/demanding here the `mask_func` returns
+# an ndarray of shape `(n, n)`; otherwise there is the possibility
+# of the output tuple having more or less than 2 elements
+@overload
+def mask_indices(
+ n: int,
+ mask_func: _MaskFunc[int],
+ k: int = ...,
+) -> Tuple[NDArray[intp], NDArray[intp]]: ...
+@overload
+def mask_indices(
+ n: int,
+ mask_func: _MaskFunc[_T],
+ k: _T,
+) -> Tuple[NDArray[intp], NDArray[intp]]: ...
+
+def tril_indices(
+ n: int,
+ k: int = ...,
+ m: None | int = ...,
+) -> Tuple[NDArray[int_], NDArray[int_]]: ...
+
+def tril_indices_from(
+ arr: NDArray[Any],
+ k: int = ...,
+) -> Tuple[NDArray[int_], NDArray[int_]]: ...
+
+def triu_indices(
+ n: int,
+ k: int = ...,
+ m: None | int = ...,
+) -> Tuple[NDArray[int_], NDArray[int_]]: ...
+
+def triu_indices_from(
+ arr: NDArray[Any],
+ k: int = ...,
+) -> Tuple[NDArray[int_], NDArray[int_]]: ...
diff --git a/numpy/typing/tests/data/fail/twodim_base.py b/numpy/typing/tests/data/fail/twodim_base.py
new file mode 100644
index 000000000..ab34a374c
--- /dev/null
+++ b/numpy/typing/tests/data/fail/twodim_base.py
@@ -0,0 +1,37 @@
+from typing import Any, List, TypeVar
+
+import numpy as np
+import numpy.typing as npt
+
+
+def func1(ar: npt.NDArray[Any], a: int) -> npt.NDArray[np.str_]:
+ pass
+
+
+def func2(ar: npt.NDArray[Any], a: float) -> float:
+ pass
+
+
+AR_b: npt.NDArray[np.bool_]
+AR_m: npt.NDArray[np.timedelta64]
+
+AR_LIKE_b: List[bool]
+
+np.eye(10, M=20.0) # E: No overload variant
+np.eye(10, k=2.5, dtype=int) # E: No overload variant
+
+np.diag(AR_b, k=0.5) # E: No overload variant
+np.diagflat(AR_b, k=0.5) # E: No overload variant
+
+np.tri(10, M=20.0) # E: No overload variant
+np.tri(10, k=2.5, dtype=int) # E: No overload variant
+
+np.tril(AR_b, k=0.5) # E: No overload variant
+np.triu(AR_b, k=0.5) # E: No overload variant
+
+np.vander(AR_m) # E: incompatible type
+
+np.histogram2d(AR_m) # E: No overload variant
+
+np.mask_indices(10, func1) # E: incompatible type
+np.mask_indices(10, func2, 10.5) # E: incompatible type
diff --git a/numpy/typing/tests/data/reveal/twodim_base.py b/numpy/typing/tests/data/reveal/twodim_base.py
new file mode 100644
index 000000000..b95fbc71e
--- /dev/null
+++ b/numpy/typing/tests/data/reveal/twodim_base.py
@@ -0,0 +1,72 @@
+from typing import Any, List, TypeVar
+
+import numpy as np
+import numpy.typing as npt
+
+_SCT = TypeVar("_SCT", bound=np.generic)
+
+
+def func1(ar: npt.NDArray[_SCT], a: int) -> npt.NDArray[_SCT]:
+ pass
+
+
+def func2(ar: npt.NDArray[np.number[Any]], a: str) -> npt.NDArray[np.float64]:
+ pass
+
+
+AR_b: npt.NDArray[np.bool_]
+AR_u: npt.NDArray[np.uint64]
+AR_i: npt.NDArray[np.int64]
+AR_f: npt.NDArray[np.float64]
+AR_c: npt.NDArray[np.complex128]
+AR_O: npt.NDArray[np.object_]
+
+AR_LIKE_b: List[bool]
+
+reveal_type(np.fliplr(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(np.fliplr(AR_LIKE_b)) # E: numpy.ndarray[Any, numpy.dtype[Any]]
+
+reveal_type(np.flipud(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(np.flipud(AR_LIKE_b)) # E: numpy.ndarray[Any, numpy.dtype[Any]]
+
+reveal_type(np.eye(10)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]]
+reveal_type(np.eye(10, M=20, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]]
+reveal_type(np.eye(10, k=2, dtype=int)) # E: numpy.ndarray[Any, numpy.dtype[Any]]
+
+reveal_type(np.diag(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(np.diag(AR_LIKE_b, k=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]]
+
+reveal_type(np.diagflat(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(np.diagflat(AR_LIKE_b, k=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]]
+
+reveal_type(np.tri(10)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]]
+reveal_type(np.tri(10, M=20, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]]
+reveal_type(np.tri(10, k=2, dtype=int)) # E: numpy.ndarray[Any, numpy.dtype[Any]]
+
+reveal_type(np.tril(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(np.tril(AR_LIKE_b, k=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]]
+
+reveal_type(np.triu(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]]
+reveal_type(np.triu(AR_LIKE_b, k=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]]
+
+reveal_type(np.vander(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(np.vander(AR_u)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(np.vander(AR_i, N=2)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]
+reveal_type(np.vander(AR_f, increasing=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]
+reveal_type(np.vander(AR_c)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]
+reveal_type(np.vander(AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]]
+
+reveal_type(np.histogram2d(AR_i, AR_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
+reveal_type(np.histogram2d(AR_f, AR_f)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]]
+reveal_type(np.histogram2d(AR_f, AR_c, weights=AR_LIKE_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]
+
+reveal_type(np.mask_indices(10, func1)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]]
+reveal_type(np.mask_indices(8, func2, "0")) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]]
+
+reveal_type(np.tril_indices(10)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{int_}]], numpy.ndarray[Any, numpy.dtype[{int_}]]]
+
+reveal_type(np.tril_indices_from(AR_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{int_}]], numpy.ndarray[Any, numpy.dtype[{int_}]]]
+
+reveal_type(np.triu_indices(10)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{int_}]], numpy.ndarray[Any, numpy.dtype[{int_}]]]
+
+reveal_type(np.triu_indices_from(AR_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{int_}]], numpy.ndarray[Any, numpy.dtype[{int_}]]]