summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--numpy/lib/twodim_base.py23
1 files changed, 21 insertions, 2 deletions
diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py
index ce147965c..a8ae3dba0 100644
--- a/numpy/lib/twodim_base.py
+++ b/numpy/lib/twodim_base.py
@@ -547,7 +547,7 @@ def histogram2d(x, y, bins=10, range=None, normed=False, weights=None):
An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights
are normalized to 1 if `normed` is True. If `normed` is False, the
values of the returned histogram are equal to the sum of the weights
- belonging to the samples falling into each bin.
+l belonging to the samples falling into each bin.
Returns
-------
@@ -584,12 +584,14 @@ def histogram2d(x, y, bins=10, range=None, normed=False, weights=None):
Examples
--------
+ 2D-Histogram with fixed bin width:
+
>>> x, y = np.random.randn(2, 100)
>>> H, xedges, yedges = np.histogram2d(x, y, bins=(5, 8))
>>> H.shape, xedges.shape, yedges.shape
((5, 8), (6,), (9,))
- We can now use the Matplotlib to visualize this 2-dimensional histogram:
+ We can use imshow from Matplotlib to visualize this 2D-histogram:
>>> extent = [yedges[0], yedges[-1], xedges[-1], xedges[0]]
>>> import matplotlib.pyplot as plt
@@ -599,6 +601,23 @@ def histogram2d(x, y, bins=10, range=None, normed=False, weights=None):
<matplotlib.colorbar.Colorbar instance at ...>
>>> plt.show()
+
+ 2D-Histogram with variable bin size:
+
+ >>>import numpy as np, matplotlib.pyplot as plt
+ x = np.random.normal(3, 2, 1000)
+ y = np.random.normal(3, 1, 1000)
+ yedges=xedges=[0,2,3,4,6]
+ H, yedges, xedges = np.histogram2d(y,x, bins=(yedges,xedges))
+ extent = [xedges[0], xedges[-1], yedges[-1], yedges[0]]
+ X,Y = np.meshgrid(xedges, yedges)
+ plt.pcolormesh(X, Y,H)
+ plt.colorbar()
+ plt.show()
+
+
+ For interpolated visulization matplotlib provides the NonUniformImage. See
+ http://matplotlib.org/examples/pylab_examples/image_nonuniform.html
"""
from numpy import histogramdd