diff options
| -rw-r--r-- | numpy/lib/polynomial.py | 18 | ||||
| -rw-r--r-- | numpy/polynomial/_polybase.py | 10 | ||||
| -rw-r--r-- | numpy/polynomial/chebyshev.py | 12 | ||||
| -rw-r--r-- | numpy/polynomial/hermite.py | 12 | ||||
| -rw-r--r-- | numpy/polynomial/hermite_e.py | 12 | ||||
| -rw-r--r-- | numpy/polynomial/laguerre.py | 12 | ||||
| -rw-r--r-- | numpy/polynomial/legendre.py | 12 | ||||
| -rw-r--r-- | numpy/polynomial/polynomial.py | 12 |
8 files changed, 53 insertions, 47 deletions
diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py index c40e50a57..1cbb3cd88 100644 --- a/numpy/lib/polynomial.py +++ b/numpy/lib/polynomial.py @@ -510,13 +510,19 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): coefficients for `k`-th data set are in ``p[:,k]``. residuals, rank, singular_values, rcond - Present only if `full` = True. Residuals is sum of squared residuals - of the least-squares fit, the effective rank of the scaled Vandermonde - coefficient matrix, its singular values, and the specified value of - `rcond`. For more details, see `linalg.lstsq`. + These values are only returned if ``full == True`` + + - residuals -- sum of squared residuals of the least squares fit + - rank -- the effective rank of the scaled Vandermonde + coefficient matrix + - singular_values -- singular values of the scaled Vandermonde + coefficient matrix + - rcond -- value of `rcond`. + + For more details, see `numpy.linalg.lstsq`. V : ndarray, shape (M,M) or (M,M,K) - Present only if `full` = False and `cov`=True. The covariance + Present only if ``full == False`` and ``cov == True``. The covariance matrix of the polynomial coefficient estimates. The diagonal of this matrix are the variance estimates for each coefficient. If y is a 2-D array, then the covariance matrix for the `k`-th data set @@ -527,7 +533,7 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): ----- RankWarning The rank of the coefficient matrix in the least-squares fit is - deficient. The warning is only raised if `full` = False. + deficient. The warning is only raised if ``full == False``. The warnings can be turned off by diff --git a/numpy/polynomial/_polybase.py b/numpy/polynomial/_polybase.py index 5525b232b..8a72af278 100644 --- a/numpy/polynomial/_polybase.py +++ b/numpy/polynomial/_polybase.py @@ -958,12 +958,12 @@ class ABCPolyBase(abc.ABC): of interest, do ``new_series.convert().coef``. [resid, rank, sv, rcond] : list - These values are only returned if `full` = True + These values are only returned if ``full == True`` - resid -- sum of squared residuals of the least squares fit - rank -- the numerical rank of the scaled Vandermonde matrix - sv -- singular values of the scaled Vandermonde matrix - rcond -- value of `rcond`. + - resid -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - sv -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. For more details, see `linalg.lstsq`. diff --git a/numpy/polynomial/chebyshev.py b/numpy/polynomial/chebyshev.py index 210000ec4..97271a8a0 100644 --- a/numpy/polynomial/chebyshev.py +++ b/numpy/polynomial/chebyshev.py @@ -1598,12 +1598,12 @@ def chebfit(x, y, deg, rcond=None, full=False, w=None): `k`. [residuals, rank, singular_values, rcond] : list - These values are only returned if `full` = True + These values are only returned if ``full == True`` - resid -- sum of squared residuals of the least squares fit - rank -- the numerical rank of the scaled Vandermonde matrix - sv -- singular values of the scaled Vandermonde matrix - rcond -- value of `rcond`. + - residuals -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - singular_values -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. For more details, see `numpy.linalg.lstsq`. @@ -1611,7 +1611,7 @@ def chebfit(x, y, deg, rcond=None, full=False, w=None): ----- RankWarning The rank of the coefficient matrix in the least-squares fit is - deficient. The warning is only raised if `full` = False. The + deficient. The warning is only raised if ``full == False``. The warnings can be turned off by >>> import warnings diff --git a/numpy/polynomial/hermite.py b/numpy/polynomial/hermite.py index c1b9f71c0..9800063f0 100644 --- a/numpy/polynomial/hermite.py +++ b/numpy/polynomial/hermite.py @@ -1324,12 +1324,12 @@ def hermfit(x, y, deg, rcond=None, full=False, w=None): `k`. [residuals, rank, singular_values, rcond] : list - These values are only returned if `full` = True + These values are only returned if ``full == True`` - resid -- sum of squared residuals of the least squares fit - rank -- the numerical rank of the scaled Vandermonde matrix - sv -- singular values of the scaled Vandermonde matrix - rcond -- value of `rcond`. + - residuals -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - singular_values -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. For more details, see `numpy.linalg.lstsq`. @@ -1337,7 +1337,7 @@ def hermfit(x, y, deg, rcond=None, full=False, w=None): ----- RankWarning The rank of the coefficient matrix in the least-squares fit is - deficient. The warning is only raised if `full` = False. The + deficient. The warning is only raised if ``full == False``. The warnings can be turned off by >>> import warnings diff --git a/numpy/polynomial/hermite_e.py b/numpy/polynomial/hermite_e.py index b7095c910..abd27361e 100644 --- a/numpy/polynomial/hermite_e.py +++ b/numpy/polynomial/hermite_e.py @@ -1315,12 +1315,12 @@ def hermefit(x, y, deg, rcond=None, full=False, w=None): `k`. [residuals, rank, singular_values, rcond] : list - These values are only returned if `full` = True + These values are only returned if ``full == True`` - resid -- sum of squared residuals of the least squares fit - rank -- the numerical rank of the scaled Vandermonde matrix - sv -- singular values of the scaled Vandermonde matrix - rcond -- value of `rcond`. + - residuals -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - singular_values -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. For more details, see `numpy.linalg.lstsq`. @@ -1328,7 +1328,7 @@ def hermefit(x, y, deg, rcond=None, full=False, w=None): ----- RankWarning The rank of the coefficient matrix in the least-squares fit is - deficient. The warning is only raised if `full` = False. The + deficient. The warning is only raised if ``full = False``. The warnings can be turned off by >>> import warnings diff --git a/numpy/polynomial/laguerre.py b/numpy/polynomial/laguerre.py index d3b6432dc..e46d29ed5 100644 --- a/numpy/polynomial/laguerre.py +++ b/numpy/polynomial/laguerre.py @@ -1321,12 +1321,12 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None): `k`. [residuals, rank, singular_values, rcond] : list - These values are only returned if `full` = True + These values are only returned if ``full == True`` - resid -- sum of squared residuals of the least squares fit - rank -- the numerical rank of the scaled Vandermonde matrix - sv -- singular values of the scaled Vandermonde matrix - rcond -- value of `rcond`. + - residuals -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - singular_values -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. For more details, see `numpy.linalg.lstsq`. @@ -1334,7 +1334,7 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None): ----- RankWarning The rank of the coefficient matrix in the least-squares fit is - deficient. The warning is only raised if `full` = False. The + deficient. The warning is only raised if ``full == False``. The warnings can be turned off by >>> import warnings diff --git a/numpy/polynomial/legendre.py b/numpy/polynomial/legendre.py index d4cf4accf..9faad96e2 100644 --- a/numpy/polynomial/legendre.py +++ b/numpy/polynomial/legendre.py @@ -1339,12 +1339,12 @@ def legfit(x, y, deg, rcond=None, full=False, w=None): returned `coef`. [residuals, rank, singular_values, rcond] : list - These values are only returned if `full` = True + These values are only returned if ``full == True`` - resid -- sum of squared residuals of the least squares fit - rank -- the numerical rank of the scaled Vandermonde matrix - sv -- singular values of the scaled Vandermonde matrix - rcond -- value of `rcond`. + - residuals -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - singular_values -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. For more details, see `numpy.linalg.lstsq`. @@ -1352,7 +1352,7 @@ def legfit(x, y, deg, rcond=None, full=False, w=None): ----- RankWarning The rank of the coefficient matrix in the least-squares fit is - deficient. The warning is only raised if `full` = False. The + deficient. The warning is only raised if ``full == False``. The warnings can be turned off by >>> import warnings diff --git a/numpy/polynomial/polynomial.py b/numpy/polynomial/polynomial.py index d8a032068..2fead88ab 100644 --- a/numpy/polynomial/polynomial.py +++ b/numpy/polynomial/polynomial.py @@ -1268,12 +1268,12 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None): fit to the data in `y`'s `k`-th column. [residuals, rank, singular_values, rcond] : list - These values are only returned if `full` = True + These values are only returned if ``full == True`` - resid -- sum of squared residuals of the least squares fit - rank -- the numerical rank of the scaled Vandermonde matrix - sv -- singular values of the scaled Vandermonde matrix - rcond -- value of `rcond`. + - residuals -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - singular_values -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. For more details, see `numpy.linalg.lstsq`. @@ -1281,7 +1281,7 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None): ------ RankWarning Raised if the matrix in the least-squares fit is rank deficient. - The warning is only raised if `full` == False. The warnings can + The warning is only raised if ``full == False``. The warnings can be turned off by: >>> import warnings |
