summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--numpy/core/machar.py4
-rw-r--r--numpy/core/memmap.py6
-rw-r--r--numpy/core/records.py12
-rw-r--r--numpy/ctypeslib.py10
-rw-r--r--numpy/lib/index_tricks.py4
-rw-r--r--numpy/lib/shape_base.py4
-rw-r--r--numpy/linalg/linalg.py8
-rw-r--r--numpy/oldnumeric/mlab.py3
8 files changed, 25 insertions, 26 deletions
diff --git a/numpy/core/machar.py b/numpy/core/machar.py
index 290f33746..08ea2ae61 100644
--- a/numpy/core/machar.py
+++ b/numpy/core/machar.py
@@ -188,8 +188,8 @@ class MachAr(object):
negep = negep - 1
# Prevent infinite loop on PPC with gcc 4.0:
if negep < 0:
- raise RuntimeError, "could not determine machine tolerance " \
- "for 'negep', locals() -> %s" % (locals())
+ raise RuntimeError("could not determine machine tolerance "
+ "for 'negep', locals() -> %s" % (locals()))
else:
raise RuntimeError, msg % (_, one.dtype)
negep = -negep
diff --git a/numpy/core/memmap.py b/numpy/core/memmap.py
index c445ee641..5a7aaba1c 100644
--- a/numpy/core/memmap.py
+++ b/numpy/core/memmap.py
@@ -184,7 +184,7 @@ class memmap(ndarray):
mode = mode_equivalents[mode]
except KeyError:
if mode not in valid_filemodes:
- raise ValueError("mode must be one of %s" % \
+ raise ValueError("mode must be one of %s" %
(valid_filemodes + mode_equivalents.keys()))
if hasattr(filename,'read'):
@@ -204,8 +204,8 @@ class memmap(ndarray):
bytes = flen - offset
if (bytes % _dbytes):
fid.close()
- raise ValueError, "Size of available data is not a "\
- "multiple of data-type size."
+ raise ValueError("Size of available data is not a "
+ "multiple of the data-type size.")
size = bytes // _dbytes
shape = (size,)
else:
diff --git a/numpy/core/records.py b/numpy/core/records.py
index b2425ec6a..964b4a54e 100644
--- a/numpy/core/records.py
+++ b/numpy/core/records.py
@@ -244,8 +244,8 @@ class record(nt.void):
return obj.view(chararray)
return obj
else:
- raise AttributeError, "'record' object has no "\
- "attribute '%s'" % attr
+ raise AttributeError("'record' object has no "
+ "attribute '%s'" % attr)
def __setattr__(self, attr, val):
@@ -259,8 +259,8 @@ class record(nt.void):
if getattr(self, attr, None):
return nt.void.__setattr__(self, attr, val)
else:
- raise AttributeError, "'record' object has no "\
- "attribute '%s'" % attr
+ raise AttributeError("'record' object has no "
+ "attribute '%s'" % attr)
def pprint(self):
"""Pretty-print all fields."""
@@ -545,8 +545,8 @@ def fromarrays(arrayList, dtype=None, shape=None, formats=None,
# Determine shape from data-type.
if len(descr) != len(arrayList):
- raise ValueError, "mismatch between the number of fields "\
- "and the number of arrays"
+ raise ValueError("mismatch between the number of fields "
+ "and the number of arrays")
d0 = descr[0].shape
nn = len(d0)
diff --git a/numpy/ctypeslib.py b/numpy/ctypeslib.py
index e590645a8..2caca3f4f 100644
--- a/numpy/ctypeslib.py
+++ b/numpy/ctypeslib.py
@@ -159,7 +159,7 @@ class _ndptr(_ndptr_base):
'typestr': self._dtype_.descr[0][1],
'data': (self.value, False),
}
-
+
@classmethod
def from_param(cls, obj):
if not isinstance(obj, ndarray):
@@ -175,8 +175,8 @@ class _ndptr(_ndptr_base):
raise TypeError("array must have shape %s" % str(cls._shape_))
if cls._flags_ is not None \
and ((obj.flags.num & cls._flags_) != cls._flags_):
- raise TypeError, "array must have flags %s" % \
- _flags_fromnum(cls._flags_)
+ raise TypeError("array must have flags %s" %
+ _flags_fromnum(cls._flags_))
return obj.ctypes
@@ -386,7 +386,7 @@ if ctypes is not None:
# public functions
def as_array(obj, shape=None):
- """Create a numpy array from a ctypes array or a ctypes POINTER.
+ """Create a numpy array from a ctypes array or a ctypes POINTER.
The numpy array shares the memory with the ctypes object.
The size parameter must be given if converting from a ctypes POINTER.
@@ -394,7 +394,7 @@ if ctypes is not None:
"""
tp = type(obj)
try: tp.__array_interface__
- except AttributeError:
+ except AttributeError:
if hasattr(obj, 'contents'):
prep_pointer(obj, shape)
else:
diff --git a/numpy/lib/index_tricks.py b/numpy/lib/index_tricks.py
index 24c7bde90..c29f3a6d3 100644
--- a/numpy/lib/index_tricks.py
+++ b/numpy/lib/index_tricks.py
@@ -267,8 +267,8 @@ class AxisConcatenator(object):
newobj = newobj.swapaxes(-1,trans1d)
elif isinstance(key[k],str):
if k != 0:
- raise ValueError, "special directives must be the"\
- "first entry."
+ raise ValueError("special directives must be the "
+ "first entry.")
key0 = key[0]
if key0 in 'rc':
self.matrix = True
diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py
index 719cf0814..946cf172a 100644
--- a/numpy/lib/shape_base.py
+++ b/numpy/lib/shape_base.py
@@ -187,8 +187,8 @@ def apply_over_axes(func, a, axes):
if res.ndim == val.ndim:
val = res
else:
- raise ValueError, "function is not returning"\
- " an array of correct shape"
+ raise ValueError("function is not returning "
+ "an array of the correct shape")
return val
def expand_dims(a, axis):
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index 1aaefd089..44396f075 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -151,8 +151,8 @@ def _fastCopyAndTranspose(type, *arrays):
def _assertRank2(*arrays):
for a in arrays:
if len(a.shape) != 2:
- raise LinAlgError, '%d-dimensional array given. Array must be \
- two-dimensional' % len(a.shape)
+ raise LinAlgError('%d-dimensional array given. Array must be '
+ 'two-dimensional' % len(a.shape))
def _assertSquareness(*arrays):
for a in arrays:
@@ -527,8 +527,8 @@ def cholesky(a):
lapack_routine = lapack_lite.dpotrf
results = lapack_routine(_L, n, a, m, 0)
if results['info'] > 0:
- raise LinAlgError, 'Matrix is not positive definite - \
- Cholesky decomposition cannot be computed'
+ raise LinAlgError('Matrix is not positive definite - '
+ 'Cholesky decomposition cannot be computed')
s = triu(a, k=0).transpose()
if (s.dtype != result_t):
s = s.astype(result_t)
diff --git a/numpy/oldnumeric/mlab.py b/numpy/oldnumeric/mlab.py
index e2a0262f0..2c84b6960 100644
--- a/numpy/oldnumeric/mlab.py
+++ b/numpy/oldnumeric/mlab.py
@@ -80,8 +80,7 @@ def cov(m, y=None, rowvar=0, bias=0):
y = transpose(y)
N = m.shape[0]
if (y.shape[0] != N):
- raise ValueError, "x and y must have the same number "\
- "of observations"
+ raise ValueError("x and y must have the same number of observations")
m = m - _Nmean(m,axis=0)
y = y - _Nmean(y,axis=0)
if bias: