diff options
| -rw-r--r-- | .github/FUNDING.yml | 2 | ||||
| -rw-r--r-- | doc/TESTS.rst.txt | 8 | ||||
| -rw-r--r-- | doc/source/user/basics.io.genfromtxt.rst | 2 | ||||
| -rw-r--r-- | doc/source/user/building.rst | 3 | ||||
| -rw-r--r-- | doc/source/user/c-info.beyond-basics.rst | 5 | ||||
| -rw-r--r-- | numpy/__init__.pyi | 75 | ||||
| -rw-r--r-- | numpy/core/memmap.pyi | 5 | ||||
| -rw-r--r-- | numpy/core/src/npymath/npy_math_internal.h.src | 19 | ||||
| -rw-r--r-- | numpy/distutils/fcompiler/__init__.py | 3 | ||||
| -rw-r--r-- | numpy/lib/scimath.py | 21 | ||||
| -rw-r--r-- | numpy/linalg/lapack_lite/clapack_scrub.py | 21 | ||||
| -rw-r--r-- | numpy/typing/tests/data/fail/memmap.py | 5 | ||||
| -rw-r--r-- | numpy/typing/tests/data/reveal/memmap.py | 16 | ||||
| -rw-r--r-- | test_requirements.txt | 2 |
14 files changed, 141 insertions, 46 deletions
diff --git a/.github/FUNDING.yml b/.github/FUNDING.yml index 8283a20f7..8c3502443 100644 --- a/.github/FUNDING.yml +++ b/.github/FUNDING.yml @@ -1,3 +1,3 @@ github: [numfocus] tidelift: pypi/numpy -custom: https://numpy.org/about/ +custom: https://numpy.org/about#donate diff --git a/doc/TESTS.rst.txt b/doc/TESTS.rst.txt index ba09aa800..d048a4569 100644 --- a/doc/TESTS.rst.txt +++ b/doc/TESTS.rst.txt @@ -16,13 +16,7 @@ Our goal is that every module and package in NumPy should have a thorough set of unit tests. These tests should exercise the full functionality of a given routine as well as its robustness to erroneous or unexpected input -arguments. Long experience has shown that by far the best time to -write the tests is before you write or change the code - this is -`test-driven development -<https://en.wikipedia.org/wiki/Test-driven_development>`__. The -arguments for this can sound rather abstract, but we can assure you -that you will find that writing the tests first leads to more robust -and better designed code. Well-designed tests with good coverage make +arguments. Well-designed tests with good coverage make an enormous difference to the ease of refactoring. Whenever a new bug is found in a routine, you should write a new test for that specific case and add it to the test suite to prevent that bug from creeping diff --git a/doc/source/user/basics.io.genfromtxt.rst b/doc/source/user/basics.io.genfromtxt.rst index 5364acbe9..8fe7565aa 100644 --- a/doc/source/user/basics.io.genfromtxt.rst +++ b/doc/source/user/basics.io.genfromtxt.rst @@ -437,7 +437,7 @@ process these missing data. By default, any empty string is marked as missing. We can also consider more complex strings, such as ``"N/A"`` or ``"???"`` to represent missing -or invalid data. The ``missing_values`` argument accepts three kind +or invalid data. The ``missing_values`` argument accepts three kinds of values: a string or a comma-separated string diff --git a/doc/source/user/building.rst b/doc/source/user/building.rst index 10983ce8f..22efca4a6 100644 --- a/doc/source/user/building.rst +++ b/doc/source/user/building.rst @@ -45,6 +45,9 @@ Building NumPy requires the following software installed: 2) Compilers + Much of NumPy is written in C. You will need a C compiler that complies + with the C99 standard. + While a FORTRAN 77 compiler is not necessary for building NumPy, it is needed to run the ``numpy.f2py`` tests. These tests are skipped if the compiler is not auto-detected. diff --git a/doc/source/user/c-info.beyond-basics.rst b/doc/source/user/c-info.beyond-basics.rst index 121384d04..7dd22afbf 100644 --- a/doc/source/user/c-info.beyond-basics.rst +++ b/doc/source/user/c-info.beyond-basics.rst @@ -174,14 +174,13 @@ incrementing is automatically performed by :c:func:`PyArray_MultiIter_NEXT` ( ``obj`` ) macro (which can handle a multiterator ``obj`` as either a :c:expr:`PyArrayMultiIterObject *` or a :c:expr:`PyObject *`). The data from input number ``i`` is available using -:c:func:`PyArray_MultiIter_DATA` ( ``obj``, ``i`` ) and the total (broadcasted) -size as :c:func:`PyArray_MultiIter_SIZE` ( ``obj``). An example of using this +:c:func:`PyArray_MultiIter_DATA` ( ``obj``, ``i`` ). An example of using this feature follows. .. code-block:: c mobj = PyArray_MultiIterNew(2, obj1, obj2); - size = PyArray_MultiIter_SIZE(obj); + size = mobj->size; while(size--) { ptr1 = PyArray_MultiIter_DATA(mobj, 0); ptr2 = PyArray_MultiIter_DATA(mobj, 1); diff --git a/numpy/__init__.pyi b/numpy/__init__.pyi index 84a60483d..c78d48cc6 100644 --- a/numpy/__init__.pyi +++ b/numpy/__init__.pyi @@ -196,6 +196,7 @@ from typing import ( SupportsIndex, Final, final, + ClassVar, ) # Ensures that the stubs are picked up @@ -636,6 +637,17 @@ class _IOProtocol(Protocol): def tell(self) -> SupportsIndex: ... def seek(self, offset: int, whence: int, /) -> object: ... +# NOTE: `seek`, `write` and `flush` are technically only required +# for `readwrite`/`write` modes +class _MemMapIOProtocol(Protocol): + def flush(self) -> object: ... + def fileno(self) -> SupportsIndex: ... + def tell(self) -> int: ... + def seek(self, offset: int, whence: int, /) -> object: ... + def write(self, s: bytes, /) -> object: ... + @property + def read(self) -> object: ... + __all__: List[str] __path__: List[str] __version__: str @@ -758,18 +770,6 @@ class matrix(ndarray[_ShapeType, _DType_co]): def getH(self): ... def getI(self): ... -class memmap(ndarray[_ShapeType, _DType_co]): - def __new__( - subtype, - filename: Any, - dtype: Any = ..., - mode: Any = ..., - offset: Any = ..., - shape: Any = ..., - order: Any = ..., - ) -> Any: ... - def __getattr__(self, key: str) -> Any: ... - class poly1d: def __init__( self, @@ -3828,3 +3828,54 @@ class nditer: def shape(self) -> Tuple[int, ...]: ... @property def value(self) -> Tuple[NDArray[Any], ...]: ... + +_MemMapModeKind = L[ + "readonly", "r", + "copyonwrite", "c", + "readwrite", "r+", + "write", "w+", +] + +class memmap(ndarray[_ShapeType, _DType_co]): + __array_priority__: ClassVar[float] + filename: str | None + offset: int + mode: str + @overload + def __new__( + subtype, + filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol, + dtype: Type[uint8] = ..., + mode: _MemMapModeKind = ..., + offset: int = ..., + shape: None | int | Tuple[int, ...] = ..., + order: _OrderKACF = ..., + ) -> memmap[Any, dtype[uint8]]: ... + @overload + def __new__( + subtype, + filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol, + dtype: _DTypeLike[_ScalarType], + mode: _MemMapModeKind = ..., + offset: int = ..., + shape: None | int | Tuple[int, ...] = ..., + order: _OrderKACF = ..., + ) -> memmap[Any, dtype[_ScalarType]]: ... + @overload + def __new__( + subtype, + filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol, + dtype: DTypeLike, + mode: _MemMapModeKind = ..., + offset: int = ..., + shape: None | int | Tuple[int, ...] = ..., + order: _OrderKACF = ..., + ) -> memmap[Any, dtype[Any]]: ... + def __array_finalize__(self, obj: memmap[Any, Any]) -> None: ... + def __array_wrap__( + self, + array: memmap[_ShapeType, _DType_co], + context: None | Tuple[ufunc, Tuple[Any, ...], int] = ..., + ) -> Any: ... + def __getitem__(self, index): ... # TODO + def flush(self) -> None: ... diff --git a/numpy/core/memmap.pyi b/numpy/core/memmap.pyi new file mode 100644 index 000000000..ba595bf1e --- /dev/null +++ b/numpy/core/memmap.pyi @@ -0,0 +1,5 @@ +from typing import List + +from numpy import memmap as memmap + +__all__: List[str] diff --git a/numpy/core/src/npymath/npy_math_internal.h.src b/numpy/core/src/npymath/npy_math_internal.h.src index 1e46a2303..cae84befe 100644 --- a/numpy/core/src/npymath/npy_math_internal.h.src +++ b/numpy/core/src/npymath/npy_math_internal.h.src @@ -457,21 +457,40 @@ NPY_INPLACE @type@ npy_frexp@c@(@type@ x, int* exp) * #c = l,,f# * #C = L,,F# */ + +/* + * On arm64 macOS, there's a bug with sin, cos, and tan where they don't + * raise "invalid" when given INFINITY as input. + */ +#if defined(__APPLE__) && defined(__arm64__) +#define WORKAROUND_APPLE_TRIG_BUG 1 +#else +#define WORKAROUND_APPLE_TRIG_BUG 0 +#endif + /**begin repeat1 * #kind = sin,cos,tan,sinh,cosh,tanh,fabs,floor,ceil,rint,trunc,sqrt,log10, * log,exp,expm1,asin,acos,atan,asinh,acosh,atanh,log1p,exp2,log2# * #KIND = SIN,COS,TAN,SINH,COSH,TANH,FABS,FLOOR,CEIL,RINT,TRUNC,SQRT,LOG10, * LOG,EXP,EXPM1,ASIN,ACOS,ATAN,ASINH,ACOSH,ATANH,LOG1P,EXP2,LOG2# + * #TRIG_WORKAROUND = WORKAROUND_APPLE_TRIG_BUG*3, 0*22# */ #ifdef HAVE_@KIND@@C@ NPY_INPLACE @type@ npy_@kind@@c@(@type@ x) { +#if @TRIG_WORKAROUND@ + if (!npy_isfinite(x)) { + return (x - x); + } +#endif return @kind@@c@(x); } #endif /**end repeat1**/ +#undef WORKAROUND_APPLE_TRIG_BUG + /**begin repeat1 * #kind = atan2,hypot,pow,fmod,copysign# * #KIND = ATAN2,HYPOT,POW,FMOD,COPYSIGN# diff --git a/numpy/distutils/fcompiler/__init__.py b/numpy/distutils/fcompiler/__init__.py index d7579e976..c333517c0 100644 --- a/numpy/distutils/fcompiler/__init__.py +++ b/numpy/distutils/fcompiler/__init__.py @@ -745,7 +745,8 @@ _default_compilers = ( ('cygwin.*', ('gnu', 'intelv', 'absoft', 'compaqv', 'intelev', 'gnu95', 'g95')), ('linux.*', ('gnu95', 'intel', 'lahey', 'pg', 'nv', 'absoft', 'nag', 'vast', 'compaq', 'intele', 'intelem', 'gnu', 'g95', 'pathf95', 'nagfor', 'fujitsu')), - ('darwin.*', ('gnu95', 'nag', 'absoft', 'ibm', 'intel', 'gnu', 'g95', 'pg')), + ('darwin.*', ('gnu95', 'nag', 'nagfor', 'absoft', 'ibm', 'intel', 'gnu', + 'g95', 'pg')), ('sunos.*', ('sun', 'gnu', 'gnu95', 'g95')), ('irix.*', ('mips', 'gnu', 'gnu95',)), ('aix.*', ('ibm', 'gnu', 'gnu95',)), diff --git a/numpy/lib/scimath.py b/numpy/lib/scimath.py index ed9ffd295..308f1328b 100644 --- a/numpy/lib/scimath.py +++ b/numpy/lib/scimath.py @@ -7,8 +7,7 @@ For example, for functions like `log` with branch cuts, the versions in this module provide the mathematically valid answers in the complex plane:: >>> import math - >>> from numpy.lib import scimath - >>> scimath.log(-math.exp(1)) == (1+1j*math.pi) + >>> np.emath.log(-math.exp(1)) == (1+1j*math.pi) True Similarly, `sqrt`, other base logarithms, `power` and trig functions are @@ -223,16 +222,16 @@ def sqrt(x): -------- For real, non-negative inputs this works just like `numpy.sqrt`: - >>> np.lib.scimath.sqrt(1) + >>> np.emath.sqrt(1) 1.0 - >>> np.lib.scimath.sqrt([1, 4]) + >>> np.emath.sqrt([1, 4]) array([1., 2.]) But it automatically handles negative inputs: - >>> np.lib.scimath.sqrt(-1) + >>> np.emath.sqrt(-1) 1j - >>> np.lib.scimath.sqrt([-1,4]) + >>> np.emath.sqrt([-1,4]) array([0.+1.j, 2.+0.j]) """ @@ -367,9 +366,9 @@ def logn(n, x): -------- >>> np.set_printoptions(precision=4) - >>> np.lib.scimath.logn(2, [4, 8]) + >>> np.emath.logn(2, [4, 8]) array([2., 3.]) - >>> np.lib.scimath.logn(2, [-4, -8, 8]) + >>> np.emath.logn(2, [-4, -8, 8]) array([2.+4.5324j, 3.+4.5324j, 3.+0.j ]) """ @@ -462,11 +461,11 @@ def power(x, p): -------- >>> np.set_printoptions(precision=4) - >>> np.lib.scimath.power([2, 4], 2) + >>> np.emath.power([2, 4], 2) array([ 4, 16]) - >>> np.lib.scimath.power([2, 4], -2) + >>> np.emath.power([2, 4], -2) array([0.25 , 0.0625]) - >>> np.lib.scimath.power([-2, 4], 2) + >>> np.emath.power([-2, 4], 2) array([ 4.-0.j, 16.+0.j]) """ diff --git a/numpy/linalg/lapack_lite/clapack_scrub.py b/numpy/linalg/lapack_lite/clapack_scrub.py index e6f2d09f4..fffd70910 100644 --- a/numpy/linalg/lapack_lite/clapack_scrub.py +++ b/numpy/linalg/lapack_lite/clapack_scrub.py @@ -228,15 +228,18 @@ def removeHeader(source): return lines.getValue() def removeSubroutinePrototypes(source): - expression = re.compile( - r'/\* Subroutine \*/^\s*(?:(?:inline|static)\s+){0,2}(?!else|typedef|return)\w+\s+\*?\s*(\w+)\s*\([^0]+\)\s*;?' - ) - lines = LineQueue() - for line in UStringIO(source): - if not expression.match(line): - lines.add(line) - - return lines.getValue() + # This function has never worked as advertised by its name: + # - "/* Subroutine */" declarations may span multiple lines and + # cannot be matched by a line by line approach. + # - The caret in the initial regex would prevent any match, even + # of single line "/* Subroutine */" declarations. + # + # While we could "fix" this function to do what the name implies + # it should do, we have no hint of what it should really do. + # + # Therefore we keep the existing (non-)functionaity, documenting + # this function as doing nothing at all. + return source def removeBuiltinFunctions(source): lines = LineQueue() diff --git a/numpy/typing/tests/data/fail/memmap.py b/numpy/typing/tests/data/fail/memmap.py new file mode 100644 index 000000000..434870b60 --- /dev/null +++ b/numpy/typing/tests/data/fail/memmap.py @@ -0,0 +1,5 @@ +import numpy as np + +with open("file.txt", "r") as f: + np.memmap(f) # E: No overload variant +np.memmap("test.txt", shape=[10, 5]) # E: No overload variant diff --git a/numpy/typing/tests/data/reveal/memmap.py b/numpy/typing/tests/data/reveal/memmap.py new file mode 100644 index 000000000..c1d8edc67 --- /dev/null +++ b/numpy/typing/tests/data/reveal/memmap.py @@ -0,0 +1,16 @@ +import numpy as np +from typing import Any + +memmap_obj: np.memmap[Any, np.dtype[np.str_]] + +reveal_type(np.memmap.__array_priority__) # E: float +reveal_type(memmap_obj.__array_priority__) # E: float +reveal_type(memmap_obj.filename) # E: Union[builtins.str, None] +reveal_type(memmap_obj.offset) # E: int +reveal_type(memmap_obj.mode) # E: str +reveal_type(memmap_obj.flush()) # E: None + +reveal_type(np.memmap("file.txt", offset=5)) # E: numpy.memmap[Any, numpy.dtype[{uint8}]] +reveal_type(np.memmap(b"file.txt", dtype=np.float64, shape=(10, 3))) # E: numpy.memmap[Any, numpy.dtype[{float64}]] +with open("file.txt", "rb") as f: + reveal_type(np.memmap(f, dtype=float, order="K")) # E: numpy.memmap[Any, numpy.dtype[Any]] diff --git a/test_requirements.txt b/test_requirements.txt index 9d2da2e0d..6b6211872 100644 --- a/test_requirements.txt +++ b/test_requirements.txt @@ -1,7 +1,7 @@ cython==0.29.24 wheel<0.37.1 setuptools<49.2.0 -hypothesis==6.21.6 +hypothesis==6.23.0 pytest==6.2.5 pytz==2021.1 pytest-cov==2.12.1 |
