diff options
Diffstat (limited to 'benchmarks/simpleindex.py')
-rw-r--r-- | benchmarks/simpleindex.py | 42 |
1 files changed, 0 insertions, 42 deletions
diff --git a/benchmarks/simpleindex.py b/benchmarks/simpleindex.py deleted file mode 100644 index 459861b05..000000000 --- a/benchmarks/simpleindex.py +++ /dev/null @@ -1,42 +0,0 @@ -import timeit -# This is to show that NumPy is a poorer choice than nested Python lists -# if you are writing nested for loops. -# This is slower than Numeric was but Numeric was slower than Python lists were -# in the first place. - -N = 30 -code2 = r""" -for k in xrange(%d): - for l in xrange(%d): - res = a[k,l].item() + a[l,k].item() -""" % (N,N) -code3 = r""" -for k in xrange(%d): - for l in xrange(%d): - res = a[k][l] + a[l][k] -""" % (N,N) -code = r""" -for k in xrange(%d): - for l in xrange(%d): - res = a[k,l] + a[l,k] -""" % (N,N) -setup3 = r""" -import random -a = [[None for k in xrange(%d)] for l in xrange(%d)] -for k in xrange(%d): - for l in xrange(%d): - a[k][l] = random.random() -""" % (N,N,N,N) -t1 = timeit.Timer(code, 'import numpy as N; a = N.random.rand(%d,%d)' % (N,N)) -t2 = timeit.Timer(code, 'import MLab as N; a=N.rand(%d,%d)' % (N,N)) -t3 = timeit.Timer(code, 'import numarray.mlab as N; a=N.rand(%d,%d)' % (N,N)) -t4 = timeit.Timer(code2, 'import numpy as N; a = N.random.rand(%d,%d)' % (N,N)) -t5 = timeit.Timer(code3, setup3) -t6 = timeit.Timer("res = a + a.transpose()","import numpy as N; a=N.random.rand(%d,%d)" % (N,N)) -print "shape = ", (N,N) -print "NumPy 1: ", t1.repeat(3,100) -print "NumPy 2: ", t4.repeat(3,100) -print "Numeric: ", t2.repeat(3,100) -print "Numarray: ", t3.repeat(3,100) -print "Python: ", t5.repeat(3,100) -print "Optimized: ", t6.repeat(3,100) |