summaryrefslogtreecommitdiff
path: root/benchmarks/simpleindex.py
diff options
context:
space:
mode:
Diffstat (limited to 'benchmarks/simpleindex.py')
-rw-r--r--benchmarks/simpleindex.py42
1 files changed, 0 insertions, 42 deletions
diff --git a/benchmarks/simpleindex.py b/benchmarks/simpleindex.py
deleted file mode 100644
index 459861b05..000000000
--- a/benchmarks/simpleindex.py
+++ /dev/null
@@ -1,42 +0,0 @@
-import timeit
-# This is to show that NumPy is a poorer choice than nested Python lists
-# if you are writing nested for loops.
-# This is slower than Numeric was but Numeric was slower than Python lists were
-# in the first place.
-
-N = 30
-code2 = r"""
-for k in xrange(%d):
- for l in xrange(%d):
- res = a[k,l].item() + a[l,k].item()
-""" % (N,N)
-code3 = r"""
-for k in xrange(%d):
- for l in xrange(%d):
- res = a[k][l] + a[l][k]
-""" % (N,N)
-code = r"""
-for k in xrange(%d):
- for l in xrange(%d):
- res = a[k,l] + a[l,k]
-""" % (N,N)
-setup3 = r"""
-import random
-a = [[None for k in xrange(%d)] for l in xrange(%d)]
-for k in xrange(%d):
- for l in xrange(%d):
- a[k][l] = random.random()
-""" % (N,N,N,N)
-t1 = timeit.Timer(code, 'import numpy as N; a = N.random.rand(%d,%d)' % (N,N))
-t2 = timeit.Timer(code, 'import MLab as N; a=N.rand(%d,%d)' % (N,N))
-t3 = timeit.Timer(code, 'import numarray.mlab as N; a=N.rand(%d,%d)' % (N,N))
-t4 = timeit.Timer(code2, 'import numpy as N; a = N.random.rand(%d,%d)' % (N,N))
-t5 = timeit.Timer(code3, setup3)
-t6 = timeit.Timer("res = a + a.transpose()","import numpy as N; a=N.random.rand(%d,%d)" % (N,N))
-print "shape = ", (N,N)
-print "NumPy 1: ", t1.repeat(3,100)
-print "NumPy 2: ", t4.repeat(3,100)
-print "Numeric: ", t2.repeat(3,100)
-print "Numarray: ", t3.repeat(3,100)
-print "Python: ", t5.repeat(3,100)
-print "Optimized: ", t6.repeat(3,100)