summaryrefslogtreecommitdiff
path: root/doc/neps/datetime.rst
diff options
context:
space:
mode:
Diffstat (limited to 'doc/neps/datetime.rst')
-rw-r--r--doc/neps/datetime.rst354
1 files changed, 0 insertions, 354 deletions
diff --git a/doc/neps/datetime.rst b/doc/neps/datetime.rst
deleted file mode 100644
index 75cc7db88..000000000
--- a/doc/neps/datetime.rst
+++ /dev/null
@@ -1,354 +0,0 @@
-====================================================================
- A (second) proposal for implementing some date/time types in NumPy
-====================================================================
-
-:Author: Francesc Alted i Abad
-:Contact: faltet@pytables.com
-:Author: Ivan Vilata i Balaguer
-:Contact: ivan@selidor.net
-:Date: 2008-07-16
-
-
-Executive summary
-=================
-
-A date/time mark is something very handy to have in many fields where
-one has to deal with data sets. While Python has several modules that
-define a date/time type (like the integrated ``datetime`` [1]_ or
-``mx.DateTime`` [2]_), NumPy has a lack of them.
-
-In this document, we are proposing the addition of a series of date/time
-types to fill this gap. The requirements for the proposed types are
-two-folded: 1) they have to be fast to operate with and 2) they have to
-be as compatible as possible with the existing ``datetime`` module that
-comes with Python.
-
-
-Types proposed
-==============
-
-To start with, it is virtually impossible to come up with a single
-date/time type that fills the needs of every case of use. So, after
-pondering about different possibilities, we have stick with *two*
-different types, namely ``datetime64`` and ``timedelta64`` (these names
-are preliminary and can be changed), that can have different resolutions
-so as to cover different needs.
-
-**Important note:** the resolution is conceived here as a metadata that
- *complements* a date/time dtype, *without changing the base type*.
-
-Now it goes a detailed description of the proposed types.
-
-
-``datetime64``
---------------
-
-It represents a time that is absolute (i.e. not relative). It is
-implemented internally as an ``int64`` type. The internal epoch is
-POSIX epoch (see [3]_).
-
-Resolution
-~~~~~~~~~~
-
-It accepts different resolutions and for each of these resolutions, it
-will support different time spans. The table below describes the
-resolutions supported with its corresponding time spans.
-
-+----------------------+----------------------------------+
-| Resolution | Time span (years) |
-+----------------------+----------------------------------+
-| Code | Meaning | |
-+======================+==================================+
-| Y | year | [9.2e18 BC, 9.2e18 AC] |
-| Q | quarter | [3.0e18 BC, 3.0e18 AC] |
-| M | month | [7.6e17 BC, 7.6e17 AC] |
-| W | week | [1.7e17 BC, 1.7e17 AC] |
-| d | day | [2.5e16 BC, 2.5e16 AC] |
-| h | hour | [1.0e15 BC, 1.0e15 AC] |
-| m | minute | [1.7e13 BC, 1.7e13 AC] |
-| s | second | [ 2.9e9 BC, 2.9e9 AC] |
-| ms | millisecond | [ 2.9e6 BC, 2.9e6 AC] |
-| us | microsecond | [290301 BC, 294241 AC] |
-| ns | nanosecond | [ 1678 AC, 2262 AC] |
-+----------------------+----------------------------------+
-
-Building a ``datetime64`` dtype
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-The proposed way to specify the resolution in the dtype constructor
-is:
-
-Using parameters in the constructor::
-
- dtype('datetime64', res="us") # the default res. is microseconds
-
-Using the long string notation::
-
- dtype('datetime64[us]') # equivalent to dtype('datetime64')
-
-Using the short string notation::
-
- dtype('T8[us]') # equivalent to dtype('T8')
-
-Compatibility issues
-~~~~~~~~~~~~~~~~~~~~
-
-This will be fully compatible with the ``datetime`` class of the
-``datetime`` module of Python only when using a resolution of
-microseconds. For other resolutions, the conversion process will
-loose precision or will overflow as needed.
-
-
-``timedelta64``
----------------
-
-It represents a time that is relative (i.e. not absolute). It is
-implemented internally as an ``int64`` type.
-
-Resolution
-~~~~~~~~~~
-
-It accepts different resolutions and for each of these resolutions, it
-will support different time spans. The table below describes the
-resolutions supported with its corresponding time spans.
-
-+----------------------+--------------------------+
-| Resolution | Time span |
-+----------------------+--------------------------+
-| Code | Meaning | |
-+======================+==========================+
-| W | week | +- 1.7e17 years |
-| D | day | +- 2.5e16 years |
-| h | hour | +- 1.0e15 years |
-| m | minute | +- 1.7e13 years |
-| s | second | +- 2.9e12 years |
-| ms | millisecond | +- 2.9e9 years |
-| us | microsecond | +- 2.9e6 years |
-| ns | nanosecond | +- 292 years |
-| ps | picosecond | +- 106 days |
-| fs | femtosecond | +- 2.6 hours |
-| as | attosecond | +- 9.2 seconds |
-+----------------------+--------------------------+
-
-Building a ``timedelta64`` dtype
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-The proposed way to specify the resolution in the dtype constructor
-is:
-
-Using parameters in the constructor::
-
- dtype('timedelta64', res="us") # the default res. is microseconds
-
-Using the long string notation::
-
- dtype('timedelta64[us]') # equivalent to dtype('datetime64')
-
-Using the short string notation::
-
- dtype('t8[us]') # equivalent to dtype('t8')
-
-Compatibility issues
-~~~~~~~~~~~~~~~~~~~~
-
-This will be fully compatible with the ``timedelta`` class of the
-``datetime`` module of Python only when using a resolution of
-microseconds. For other resolutions, the conversion process will
-loose precision or will overflow as needed.
-
-
-Example of use
-==============
-
-Here it is an example of use for the ``datetime64``::
-
- In [10]: t = numpy.zeros(5, dtype="datetime64[ms]")
-
- In [11]: t[0] = datetime.datetime.now() # setter in action
-
- In [12]: t[0]
- Out[12]: '2008-07-16T13:39:25.315' # representation in ISO 8601 format
-
- In [13]: print t
- [2008-07-16T13:39:25.315 1970-01-01T00:00:00.0
- 1970-01-01T00:00:00.0 1970-01-01T00:00:00.0 1970-01-01T00:00:00.0]
-
- In [14]: t[0].item() # getter in action
- Out[14]: datetime.datetime(2008, 7, 16, 13, 39, 25, 315000)
-
- In [15]: print t.dtype
- datetime64[ms]
-
-And here it goes an example of use for the ``timedelta64``::
-
- In [8]: t1 = numpy.zeros(5, dtype="datetime64[s]")
-
- In [9]: t2 = numpy.ones(5, dtype="datetime64[s]")
-
- In [10]: t = t2 - t1
-
- In [11]: t[0] = 24 # setter in action (setting to 24 seconds)
-
- In [12]: t[0]
- Out[12]: 24 # representation as an int64
-
- In [13]: print t
- [24 1 1 1 1]
-
- In [14]: t[0].item() # getter in action
- Out[14]: datetime.timedelta(0, 24)
-
- In [15]: print t.dtype
- timedelta64[s]
-
-
-Operating with date/time arrays
-===============================
-
-``datetime64`` vs ``datetime64``
---------------------------------
-
-The only operation allowed between absolute dates is the subtraction::
-
- In [10]: numpy.ones(5, "T8") - numpy.zeros(5, "T8")
- Out[10]: array([1, 1, 1, 1, 1], dtype=timedelta64[us])
-
-But not other operations::
-
- In [11]: numpy.ones(5, "T8") + numpy.zeros(5, "T8")
- TypeError: unsupported operand type(s) for +: 'numpy.ndarray' and 'numpy.ndarray'
-
-``datetime64`` vs ``timedelta64``
----------------------------------
-
-It will be possible to add and subtract relative times from absolute
-dates::
-
- In [10]: numpy.zeros(5, "T8[Y]") + numpy.ones(5, "t8[Y]")
- Out[10]: array([1971, 1971, 1971, 1971, 1971], dtype=datetime64[Y])
-
- In [11]: numpy.ones(5, "T8[Y]") - 2 * numpy.ones(5, "t8[Y]")
- Out[11]: array([1969, 1969, 1969, 1969, 1969], dtype=datetime64[Y])
-
-But not other operations::
-
- In [12]: numpy.ones(5, "T8[Y]") * numpy.ones(5, "t8[Y]")
- TypeError: unsupported operand type(s) for *: 'numpy.ndarray' and 'numpy.ndarray'
-
-``timedelta64`` vs anything
----------------------------
-
-Finally, it will be possible to operate with relative times as if they
-were regular int64 dtypes *as long as* the result can be converted back
-into a ``timedelta64``::
-
- In [10]: numpy.ones(5, 't8')
- Out[10]: array([1, 1, 1, 1, 1], dtype=timedelta64[us])
-
- In [11]: (numpy.ones(5, 't8[M]') + 2) ** 3
- Out[11]: array([27, 27, 27, 27, 27], dtype=timedelta64[M])
-
-But::
-
- In [12]: numpy.ones(5, 't8') + 1j
- TypeError: The result cannot be converted into a ``timedelta64``
-
-
-dtype/resolution conversions
-============================
-
-For changing the date/time dtype of an existing array, we propose to use
-the ``.astype()`` method. This will be mainly useful for changing
-resolutions.
-
-For example, for absolute dates::
-
- In[10]: t1 = numpy.zeros(5, dtype="datetime64[s]")
-
- In[11]: print t1
- [1970-01-01T00:00:00 1970-01-01T00:00:00 1970-01-01T00:00:00
- 1970-01-01T00:00:00 1970-01-01T00:00:00]
-
- In[12]: print t1.astype('datetime64[d]')
- [1970-01-01 1970-01-01 1970-01-01 1970-01-01 1970-01-01]
-
-For relative times::
-
- In[10]: t1 = numpy.ones(5, dtype="timedelta64[s]")
-
- In[11]: print t1
- [1 1 1 1 1]
-
- In[12]: print t1.astype('timedelta64[ms]')
- [1000 1000 1000 1000 1000]
-
-Changing directly from/to relative to/from absolute dtypes will not be
-supported::
-
- In[13]: numpy.zeros(5, dtype="datetime64[s]").astype('timedelta64')
- TypeError: data type cannot be converted to the desired type
-
-
-Final considerations
-====================
-
-Why the ``origin`` metadata disappeared
----------------------------------------
-
-During the discussion of the date/time dtypes in the NumPy list, the
-idea of having an ``origin`` metadata that complemented the definition
-of the absolute ``datetime64`` was initially found to be useful.
-
-However, after thinking more about this, Ivan and me find that the
-combination of an absolute ``datetime64`` with a relative
-``timedelta64`` does offer the same functionality while removing the
-need for the additional ``origin`` metadata. This is why we have
-removed it from this proposal.
-
-
-Resolution and dtype issues
----------------------------
-
-The date/time dtype's resolution metadata cannot be used in general as
-part of typical dtype usage. For example, in::
-
- numpy.zeros(5, dtype=numpy.datetime64)
-
-we have to found yet a sensible way to pass the resolution. Perhaps the
-next would work::
-
- numpy.zeros(5, dtype=numpy.datetime64(res='Y'))
-
-but we are not sure if this would collide with the spirit of the NumPy
-dtypes.
-
-At any rate, one can always do::
-
- numpy.zeros(5, dtype=numpy.dtype('datetime64', res='Y'))
-
-BTW, prior to all of this, one should also elucidate whether::
-
- numpy.dtype('datetime64', res='Y')
-
-or::
-
- numpy.dtype('datetime64[Y]')
- numpy.dtype('T8[Y]')
-
-would be a consistent way to instantiate a dtype in NumPy. We do really
-think that could be a good way, but we would need to hear the opinion of
-the expert. Travis?
-
-
-
-.. [1] http://docs.python.org/lib/module-datetime.html
-.. [2] http://www.egenix.com/products/python/mxBase/mxDateTime
-.. [3] http://en.wikipedia.org/wiki/Unix_time
-
-
-.. Local Variables:
-.. mode: rst
-.. coding: utf-8
-.. fill-column: 72
-.. End:
-