summaryrefslogtreecommitdiff
path: root/doc/neps/nep-0012-missing-data.rst
diff options
context:
space:
mode:
Diffstat (limited to 'doc/neps/nep-0012-missing-data.rst')
-rw-r--r--doc/neps/nep-0012-missing-data.rst16
1 files changed, 8 insertions, 8 deletions
diff --git a/doc/neps/nep-0012-missing-data.rst b/doc/neps/nep-0012-missing-data.rst
index 1553339f4..dbcf1b579 100644
--- a/doc/neps/nep-0012-missing-data.rst
+++ b/doc/neps/nep-0012-missing-data.rst
@@ -1,10 +1,10 @@
-===================================
-Missing Data Functionality in NumPy
-===================================
+============================================
+NEP 12 — Missing Data Functionality in NumPy
+============================================
:Author: Mark Wiebe <mwwiebe@gmail.com>
:Copyright: Copyright 2011 by Enthought, Inc
-:License: CC By-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/)
+:License: CC By-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/)
:Date: 2011-06-23
:Status: Deferred
@@ -224,7 +224,7 @@ but with semantics reflecting its status as a missing value. In particular,
trying to treat it as a boolean will raise an exception, and comparisons
with it will produce numpy.NA instead of True or False. These basics are
adopted from the behavior of the NA value in the R project. To dig
-deeper into the ideas, http://en.wikipedia.org/wiki/Ternary_logic#Kleene_logic
+deeper into the ideas, https://en.wikipedia.org/wiki/Ternary_logic#Kleene_logic
provides a starting point.
For example,::
@@ -857,7 +857,7 @@ Shared Masks
One feature of numpy.ma is called 'shared masks'.
-http://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray.sharedmask
+https://docs.scipy.org/doc/numpy/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray.sharedmask
This feature cannot be supported by a masked implementation of
missing values without directly violating the missing value abstraction.
@@ -888,7 +888,7 @@ found from doing google searches of numpy C API array access.
NumPy Documentation - How to extend NumPy
-----------------------------------------
-http://docs.scipy.org/doc/numpy/user/c-info.how-to-extend.html#dealing-with-array-objects
+https://docs.scipy.org/doc/numpy/user/c-info.how-to-extend.html#dealing-with-array-objects
This page has a section "Dealing with array objects" which has some advice for how
to access numpy arrays from C. When accepting arrays, the first step it suggests is
@@ -898,7 +898,7 @@ advice will properly fail when given an NA-masked array it doesn't know how to h
The way this is handled is that PyArray_FromAny requires a special flag, NPY_ARRAY_ALLOWNA,
before it will allow NA-masked arrays to flow through.
-http://docs.scipy.org/doc/numpy/reference/c-api.array.html#NPY_ARRAY_ALLOWNA
+https://docs.scipy.org/doc/numpy/reference/c-api.array.html#NPY_ARRAY_ALLOWNA
Code which does not follow this advice, and instead just calls PyArray_Check() to verify
its an ndarray and checks some flags, will silently produce incorrect results. This style