summaryrefslogtreecommitdiff
path: root/doc/pyrex/numpyx.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'doc/pyrex/numpyx.pyx')
-rw-r--r--doc/pyrex/numpyx.pyx101
1 files changed, 0 insertions, 101 deletions
diff --git a/doc/pyrex/numpyx.pyx b/doc/pyrex/numpyx.pyx
deleted file mode 100644
index 068d251f6..000000000
--- a/doc/pyrex/numpyx.pyx
+++ /dev/null
@@ -1,101 +0,0 @@
-# -*- Mode: Python -*- Not really, but close enough
-"""WARNING: this code is deprecated and slated for removal soon. See the
-doc/cython directory for the replacement, which uses Cython (the actively
-maintained version of Pyrex).
-"""
-
-cimport c_python
-cimport c_numpy
-import numpy
-
-# Numpy must be initialized
-c_numpy.import_array()
-
-def print_array_info(c_numpy.ndarray arr):
- cdef int i
-
- print '-='*10
- print 'printing array info for ndarray at 0x%0lx'%(<c_python.Py_intptr_t>arr,)
- print 'print number of dimensions:',arr.nd
- print 'address of strides: 0x%0lx'%(<c_python.Py_intptr_t>arr.strides,)
- print 'strides:'
- for i from 0<=i<arr.nd:
- # print each stride
- print ' stride %d:'%i,<c_python.Py_intptr_t>arr.strides[i]
- print 'memory dump:'
- print_elements( arr.data, arr.strides, arr.dimensions,
- arr.nd, sizeof(double), arr.dtype )
- print '-='*10
- print
-
-cdef print_elements(char *data,
- c_python.Py_intptr_t* strides,
- c_python.Py_intptr_t* dimensions,
- int nd,
- int elsize,
- object dtype):
- cdef c_python.Py_intptr_t i,j
- cdef void* elptr
-
- if dtype not in [numpy.dtype(numpy.object_),
- numpy.dtype(numpy.float64)]:
- print ' print_elements() not (yet) implemented for dtype %s'%dtype.name
- return
-
- if nd ==0:
- if dtype==numpy.dtype(numpy.object_):
- elptr = (<void**>data)[0] #[0] dereferences pointer in Pyrex
- print ' ',<object>elptr
- elif dtype==numpy.dtype(numpy.float64):
- print ' ',(<double*>data)[0]
- elif nd == 1:
- for i from 0<=i<dimensions[0]:
- if dtype==numpy.dtype(numpy.object_):
- elptr = (<void**>data)[0]
- print ' ',<object>elptr
- elif dtype==numpy.dtype(numpy.float64):
- print ' ',(<double*>data)[0]
- data = data + strides[0]
- else:
- for i from 0<=i<dimensions[0]:
- print_elements(data, strides+1, dimensions+1, nd-1, elsize, dtype)
- data = data + strides[0]
-
-def test_methods(c_numpy.ndarray arr):
- """Test a few attribute accesses for an array.
-
- This illustrates how the pyrex-visible object is in practice a strange
- hybrid of the C PyArrayObject struct and the python object. Some
- properties (like .nd) are visible here but not in python, while others
- like flags behave very differently: in python flags appears as a separate,
- object while here we see the raw int holding the bit pattern.
-
- This makes sense when we think of how pyrex resolves arr.foo: if foo is
- listed as a field in the c_numpy.ndarray struct description, it will be
- directly accessed as a C variable without going through Python at all.
- This is why for arr.flags, we see the actual int which holds all the flags
- as bit fields. However, for any other attribute not listed in the struct,
- it simply forwards the attribute lookup to python at runtime, just like
- python would (which means that AttributeError can be raised for
- non-existent attributes, for example)."""
-
- print 'arr.any() :',arr.any()
- print 'arr.nd :',arr.nd
- print 'arr.flags :',arr.flags
-
-def test():
- """this function is pure Python"""
- arr1 = numpy.array(-1e-30,dtype=numpy.float64)
- arr2 = numpy.array([1.0,2.0,3.0],dtype=numpy.float64)
-
- arr3 = numpy.arange(9,dtype=numpy.float64)
- arr3.shape = 3,3
-
- four = 4
- arr4 = numpy.array(['one','two',3,four],dtype=numpy.object_)
-
- arr5 = numpy.array([1,2,3]) # int types not (yet) supported by print_elements
-
- for arr in [arr1,arr2,arr3,arr4,arr5]:
- print_array_info(arr)
-