diff options
Diffstat (limited to 'doc/release/1.6.0-notes.rst')
-rw-r--r-- | doc/release/1.6.0-notes.rst | 31 |
1 files changed, 15 insertions, 16 deletions
diff --git a/doc/release/1.6.0-notes.rst b/doc/release/1.6.0-notes.rst index c5f53a0eb..e2c71e35c 100644 --- a/doc/release/1.6.0-notes.rst +++ b/doc/release/1.6.0-notes.rst @@ -1,6 +1,5 @@ -========================= NumPy 1.6.0 Release Notes -========================= +************************* This release includes several new features as well as numerous bug fixes and improved documentation. It is backward compatible with the 1.5.0 release, and @@ -21,7 +20,7 @@ New features ============ New 16-bit floating point type ------------------------------- +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This release adds support for the IEEE 754-2008 binary16 format, available as the data type ``numpy.half``. Within Python, the type behaves similarly to @@ -30,7 +29,7 @@ half-float API. New iterator ------------- +~~~~~~~~~~~~ A new iterator has been added, replacing the functionality of the existing iterator and multi-iterator with a single object and API. @@ -43,7 +42,7 @@ iterator. Legendre, Laguerre, Hermite, HermiteE polynomials in ``numpy.polynomial`` -------------------------------------------------------------------------- +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Extend the number of polynomials available in the polynomial package. In addition, a new ``window`` attribute has been added to the classes in @@ -54,7 +53,7 @@ of values without playing unnatural tricks with the domain. Fortran assumed shape array and size function support in ``numpy.f2py`` ------------------------------------------------------------------------ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ F2py now supports wrapping Fortran 90 routines that use assumed shape arrays. Before such routines could be called from Python but the @@ -68,7 +67,7 @@ that use two argument ``size`` function in dimension specifications. Other new functions -------------------- +~~~~~~~~~~~~~~~~~~~ ``numpy.ravel_multi_index`` : Converts a multi-index tuple into an array of flat indices, applying boundary modes to the indices. @@ -91,14 +90,14 @@ Changes ======= ``default error handling`` --------------------------- +~~~~~~~~~~~~~~~~~~~~~~~~~~ The default error handling has been change from ``print`` to ``warn`` for all except for ``underflow``, which remains as ``ignore``. ``numpy.distutils`` -------------------- +~~~~~~~~~~~~~~~~~~~ Several new compilers are supported for building Numpy: the Portland Group Fortran compiler on OS X, the PathScale compiler suite and the 64-bit Intel C @@ -106,7 +105,7 @@ compiler on Linux. ``numpy.testing`` ------------------ +~~~~~~~~~~~~~~~~~ The testing framework gained ``numpy.testing.assert_allclose``, which provides a more convenient way to compare floating point arrays than @@ -114,7 +113,7 @@ a more convenient way to compare floating point arrays than ``C API`` ---------- +~~~~~~~~~ In addition to the APIs for the new iterator and half data type, a number of other additions have been made to the C API. The type promotion @@ -138,7 +137,7 @@ Removed features ================ ``numpy.fft`` -------------- +~~~~~~~~~~~~~ The functions `refft`, `refft2`, `refftn`, `irefft`, `irefft2`, `irefftn`, which were aliases for the same functions without the 'e' in the name, were @@ -146,21 +145,21 @@ removed. ``numpy.memmap`` ----------------- +~~~~~~~~~~~~~~~~ The `sync()` and `close()` methods of memmap were removed. Use `flush()` and "del memmap" instead. ``numpy.lib`` -------------- +~~~~~~~~~~~~~ The deprecated functions ``numpy.unique1d``, ``numpy.setmember1d``, ``numpy.intersect1d_nu`` and ``numpy.lib.ufunclike.log2`` were removed. ``numpy.ma`` ------------- +~~~~~~~~~~~~ Several deprecated items were removed from the ``numpy.ma`` module:: @@ -171,7 +170,7 @@ Several deprecated items were removed from the ``numpy.ma`` module:: ``numpy.distutils`` -------------------- +~~~~~~~~~~~~~~~~~~~ The ``numpy.get_numpy_include`` function was removed, use ``numpy.get_include`` instead. |