diff options
Diffstat (limited to 'doc/source/reference/random')
-rw-r--r-- | doc/source/reference/random/generator.rst | 14 | ||||
-rw-r--r-- | doc/source/reference/random/index.rst | 24 | ||||
-rw-r--r-- | doc/source/reference/random/new-or-different.rst | 22 |
3 files changed, 30 insertions, 30 deletions
diff --git a/doc/source/reference/random/generator.rst b/doc/source/reference/random/generator.rst index a359d2253..7934be98a 100644 --- a/doc/source/reference/random/generator.rst +++ b/doc/source/reference/random/generator.rst @@ -71,13 +71,13 @@ By default, `Generator.permuted` returns a copy. To operate in-place with `Generator.permuted`, pass the same array as the first argument *and* as the value of the ``out`` parameter. For example, - >>> rg = np.random.default_rng() + >>> rng = np.random.default_rng() >>> x = np.arange(0, 15).reshape(3, 5) >>> x array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) - >>> y = rg.permuted(x, axis=1, out=x) + >>> y = rng.permuted(x, axis=1, out=x) >>> x array([[ 1, 0, 2, 4, 3], # random [ 6, 7, 8, 9, 5], @@ -97,13 +97,13 @@ which dimension of the input array to use as the sequence. In the case of a two-dimensional array, ``axis=0`` will, in effect, rearrange the rows of the array, and ``axis=1`` will rearrange the columns. For example - >>> rg = np.random.default_rng() + >>> rng = np.random.default_rng() >>> x = np.arange(0, 15).reshape(3, 5) >>> x array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) - >>> rg.permutation(x, axis=1) + >>> rng.permutation(x, axis=1) array([[ 1, 3, 2, 0, 4], # random [ 6, 8, 7, 5, 9], [11, 13, 12, 10, 14]]) @@ -116,7 +116,7 @@ how `numpy.sort` treats it. Each slice along the given axis is shuffled independently of the others. Compare the following example of the use of `Generator.permuted` to the above example of `Generator.permutation`: - >>> rg.permuted(x, axis=1) + >>> rng.permuted(x, axis=1) array([[ 1, 0, 2, 4, 3], # random [ 5, 7, 6, 9, 8], [10, 14, 12, 13, 11]]) @@ -131,9 +131,9 @@ Shuffling non-NumPy sequences a sequence that is not a NumPy array, it shuffles that sequence in-place. For example, - >>> rg = np.random.default_rng() + >>> rng = np.random.default_rng() >>> a = ['A', 'B', 'C', 'D', 'E'] - >>> rg.shuffle(a) # shuffle the list in-place + >>> rng.shuffle(a) # shuffle the list in-place >>> a ['B', 'D', 'A', 'E', 'C'] # random diff --git a/doc/source/reference/random/index.rst b/doc/source/reference/random/index.rst index 13ce7c40c..69d597874 100644 --- a/doc/source/reference/random/index.rst +++ b/doc/source/reference/random/index.rst @@ -84,10 +84,10 @@ different .. code-block:: python try: - rg_integers = rg.integers + rng_integers = rng.integers except AttributeError: - rg_integers = rg.randint - a = rg_integers(1000) + rng_integers = rng.randint + a = rng_integers(1000) Seeds can be passed to any of the BitGenerators. The provided value is mixed via `SeedSequence` to spread a possible sequence of seeds across a wider @@ -97,8 +97,8 @@ is wrapped with a `Generator`. .. code-block:: python from numpy.random import Generator, PCG64 - rg = Generator(PCG64(12345)) - rg.standard_normal() + rng = Generator(PCG64(12345)) + rng.standard_normal() Here we use `default_rng` to create an instance of `Generator` to generate a random float: @@ -146,10 +146,10 @@ As a convenience NumPy provides the `default_rng` function to hide these details: >>> from numpy.random import default_rng ->>> rg = default_rng(12345) ->>> print(rg) +>>> rng = default_rng(12345) +>>> print(rng) Generator(PCG64) ->>> print(rg.random()) +>>> print(rng.random()) 0.22733602246716966 One can also instantiate `Generator` directly with a `BitGenerator` instance. @@ -158,16 +158,16 @@ To use the default `PCG64` bit generator, one can instantiate it directly and pass it to `Generator`: >>> from numpy.random import Generator, PCG64 ->>> rg = Generator(PCG64(12345)) ->>> print(rg) +>>> rng = Generator(PCG64(12345)) +>>> print(rng) Generator(PCG64) Similarly to use the older `MT19937` bit generator (not recommended), one can instantiate it directly and pass it to `Generator`: >>> from numpy.random import Generator, MT19937 ->>> rg = Generator(MT19937(12345)) ->>> print(rg) +>>> rng = Generator(MT19937(12345)) +>>> print(rng) Generator(MT19937) What's New or Different diff --git a/doc/source/reference/random/new-or-different.rst b/doc/source/reference/random/new-or-different.rst index 6cab0f729..a81543926 100644 --- a/doc/source/reference/random/new-or-different.rst +++ b/doc/source/reference/random/new-or-different.rst @@ -58,18 +58,18 @@ And in more detail: from numpy.random import Generator, PCG64 import numpy.random - rg = Generator(PCG64()) - %timeit -n 1 rg.standard_normal(100000) + rng = Generator(PCG64()) + %timeit -n 1 rng.standard_normal(100000) %timeit -n 1 numpy.random.standard_normal(100000) .. ipython:: python - %timeit -n 1 rg.standard_exponential(100000) + %timeit -n 1 rng.standard_exponential(100000) %timeit -n 1 numpy.random.standard_exponential(100000) .. ipython:: python - %timeit -n 1 rg.standard_gamma(3.0, 100000) + %timeit -n 1 rng.standard_gamma(3.0, 100000) %timeit -n 1 numpy.random.standard_gamma(3.0, 100000) @@ -94,9 +94,9 @@ And in more detail: .. ipython:: python - rg = Generator(PCG64(0)) - rg.random(3, dtype='d') - rg.random(3, dtype='f') + rng = Generator(PCG64(0)) + rng.random(3, dtype='d') + rng.random(3, dtype='f') * Optional ``out`` argument that allows existing arrays to be filled for select distributions @@ -112,7 +112,7 @@ And in more detail: .. ipython:: python existing = np.zeros(4) - rg.random(out=existing[:2]) + rng.random(out=existing[:2]) print(existing) * Optional ``axis`` argument for methods like `~.Generator.choice`, @@ -121,9 +121,9 @@ And in more detail: .. ipython:: python - rg = Generator(PCG64(123456789)) + rng = Generator(PCG64(123456789)) a = np.arange(12).reshape((3, 4)) a - rg.choice(a, axis=1, size=5) - rg.shuffle(a, axis=1) # Shuffle in-place + rng.choice(a, axis=1, size=5) + rng.shuffle(a, axis=1) # Shuffle in-place a |