summaryrefslogtreecommitdiff
path: root/doc/source/reference/routines.polynomials.classes.rst
diff options
context:
space:
mode:
Diffstat (limited to 'doc/source/reference/routines.polynomials.classes.rst')
-rw-r--r--doc/source/reference/routines.polynomials.classes.rst48
1 files changed, 24 insertions, 24 deletions
diff --git a/doc/source/reference/routines.polynomials.classes.rst b/doc/source/reference/routines.polynomials.classes.rst
index 0db77eb7c..f44ddd46c 100644
--- a/doc/source/reference/routines.polynomials.classes.rst
+++ b/doc/source/reference/routines.polynomials.classes.rst
@@ -52,7 +52,7 @@ the conventional Polynomial class because of its familiarity::
>>> from numpy.polynomial import Polynomial as P
>>> p = P([1,2,3])
>>> p
- Polynomial([ 1., 2., 3.], [-1., 1.], [-1., 1.])
+ Polynomial([ 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
Note that there are three parts to the long version of the printout. The
first is the coefficients, the second is the domain, and the third is the
@@ -77,19 +77,19 @@ we ignore them and run through the basic algebraic and arithmetic operations.
Addition and Subtraction::
>>> p + p
- Polynomial([ 2., 4., 6.], [-1., 1.], [-1., 1.])
+ Polynomial([ 2., 4., 6.], domain=[-1, 1], window=[-1, 1])
>>> p - p
- Polynomial([ 0.], [-1., 1.], [-1., 1.])
+ Polynomial([ 0.], domain=[-1, 1], window=[-1, 1])
Multiplication::
>>> p * p
- Polynomial([ 1., 4., 10., 12., 9.], [-1., 1.], [-1., 1.])
+ Polynomial([ 1., 4., 10., 12., 9.], domain=[-1, 1], window=[-1, 1])
Powers::
>>> p**2
- Polynomial([ 1., 4., 10., 12., 9.], [-1., 1.], [-1., 1.])
+ Polynomial([ 1., 4., 10., 12., 9.], domain=[-1, 1], window=[-1, 1])
Division:
@@ -100,20 +100,20 @@ versions the '/' will only work for division by scalars. At some point it
will be deprecated::
>>> p // P([-1, 1])
- Polynomial([ 5., 3.], [-1., 1.], [-1., 1.])
+ Polynomial([ 5., 3.], domain=[-1, 1], window=[-1, 1])
Remainder::
>>> p % P([-1, 1])
- Polynomial([ 6.], [-1., 1.], [-1., 1.])
+ Polynomial([ 6.], domain=[-1, 1], window=[-1, 1])
Divmod::
>>> quo, rem = divmod(p, P([-1, 1]))
>>> quo
- Polynomial([ 5., 3.], [-1., 1.], [-1., 1.])
+ Polynomial([ 5., 3.], domain=[-1, 1], window=[-1, 1])
>>> rem
- Polynomial([ 6.], [-1., 1.], [-1., 1.])
+ Polynomial([ 6.], domain=[-1, 1], window=[-1, 1])
Evaluation::
@@ -134,7 +134,7 @@ the polynomials are regarded as functions this is composition of
functions::
>>> p(p)
- Polynomial([ 6., 16., 36., 36., 27.], [-1., 1.], [-1., 1.])
+ Polynomial([ 6., 16., 36., 36., 27.], domain=[-1, 1], window=[-1, 1])
Roots::
@@ -148,11 +148,11 @@ tuples, lists, arrays, and scalars are automatically cast in the arithmetic
operations::
>>> p + [1, 2, 3]
- Polynomial([ 2., 4., 6.], [-1., 1.], [-1., 1.])
+ Polynomial([ 2., 4., 6.], domain=[-1, 1], window=[-1, 1])
>>> [1, 2, 3] * p
- Polynomial([ 1., 4., 10., 12., 9.], [-1., 1.], [-1., 1.])
+ Polynomial([ 1., 4., 10., 12., 9.], domain=[-1, 1], window=[-1, 1])
>>> p / 2
- Polynomial([ 0.5, 1. , 1.5], [-1., 1.], [-1., 1.])
+ Polynomial([ 0.5, 1. , 1.5], domain=[-1, 1], window=[-1, 1])
Polynomials that differ in domain, window, or class can't be mixed in
arithmetic::
@@ -180,7 +180,7 @@ conversion of Polynomial classes among themselves is done for type, domain,
and window casting::
>>> p(T([0, 1]))
- Chebyshev([ 2.5, 2. , 1.5], [-1., 1.], [-1., 1.])
+ Chebyshev([ 2.5, 2. , 1.5], domain=[-1, 1], window=[-1, 1])
Which gives the polynomial `p` in Chebyshev form. This works because
:math:`T_1(x) = x` and substituting :math:`x` for :math:`x` doesn't change
@@ -195,18 +195,18 @@ Polynomial instances can be integrated and differentiated.::
>>> from numpy.polynomial import Polynomial as P
>>> p = P([2, 6])
>>> p.integ()
- Polynomial([ 0., 2., 3.], [-1., 1.], [-1., 1.])
+ Polynomial([ 0., 2., 3.], domain=[-1, 1], window=[-1, 1])
>>> p.integ(2)
- Polynomial([ 0., 0., 1., 1.], [-1., 1.], [-1., 1.])
+ Polynomial([ 0., 0., 1., 1.], domain=[-1, 1], window=[-1, 1])
The first example integrates `p` once, the second example integrates it
twice. By default, the lower bound of the integration and the integration
constant are 0, but both can be specified.::
>>> p.integ(lbnd=-1)
- Polynomial([-1., 2., 3.], [-1., 1.], [-1., 1.])
+ Polynomial([-1., 2., 3.], domain=[-1, 1], window=[-1, 1])
>>> p.integ(lbnd=-1, k=1)
- Polynomial([ 0., 2., 3.], [-1., 1.], [-1., 1.])
+ Polynomial([ 0., 2., 3.], domain=[-1, 1], window=[-1, 1])
In the first case the lower bound of the integration is set to -1 and the
integration constant is 0. In the second the constant of integration is set
@@ -215,9 +215,9 @@ number of times the polynomial is differentiated::
>>> p = P([1, 2, 3])
>>> p.deriv(1)
- Polynomial([ 2., 6.], [-1., 1.], [-1., 1.])
+ Polynomial([ 2., 6.], domain=[-1, 1], window=[-1, 1])
>>> p.deriv(2)
- Polynomial([ 6.], [-1., 1.], [-1., 1.])
+ Polynomial([ 6.], domain=[-1, 1], window=[-1, 1])
Other Polynomial Constructors
@@ -233,9 +233,9 @@ are demonstrated below::
>>> from numpy.polynomial import Chebyshev as T
>>> p = P.fromroots([1, 2, 3])
>>> p
- Polynomial([ -6., 11., -6., 1.], [-1., 1.], [-1., 1.])
+ Polynomial([ -6., 11., -6., 1.], domain=[-1, 1], window=[-1, 1])
>>> p.convert(kind=T)
- Chebyshev([ -9. , 11.75, -3. , 0.25], [-1., 1.], [-1., 1.])
+ Chebyshev([ -9. , 11.75, -3. , 0.25], domain=[-1, 1], window=[-1, 1])
The convert method can also convert domain and window::
@@ -249,9 +249,9 @@ available. The cast method works like the convert method while the basis
method returns the basis polynomial of given degree::
>>> P.basis(3)
- Polynomial([ 0., 0., 0., 1.], [-1., 1.], [-1., 1.])
+ Polynomial([ 0., 0., 0., 1.], domain=[-1, 1], window=[-1, 1])
>>> T.cast(p)
- Chebyshev([ -9. , 11.75, -3. , 0.25], [-1., 1.], [-1., 1.])
+ Chebyshev([ -9. , 11.75, -3. , 0.25], domain=[-1, 1], window=[-1, 1])
Conversions between types can be useful, but it is *not* recommended
for routine use. The loss of numerical precision in passing from a