summaryrefslogtreecommitdiff
path: root/doc/source/reference/routines.polynomials.classes.rst
diff options
context:
space:
mode:
Diffstat (limited to 'doc/source/reference/routines.polynomials.classes.rst')
-rw-r--r--doc/source/reference/routines.polynomials.classes.rst58
1 files changed, 29 insertions, 29 deletions
diff --git a/doc/source/reference/routines.polynomials.classes.rst b/doc/source/reference/routines.polynomials.classes.rst
index 2ce29d9d0..896e5fe83 100644
--- a/doc/source/reference/routines.polynomials.classes.rst
+++ b/doc/source/reference/routines.polynomials.classes.rst
@@ -52,7 +52,7 @@ the conventional Polynomial class because of its familiarity::
>>> from numpy.polynomial import Polynomial as P
>>> p = P([1,2,3])
>>> p
- Polynomial([1., 2., 3.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([1., 2., 3.], domain=[-1, 1], window=[-1, 1], symbol='x')
Note that there are three parts to the long version of the printout. The
first is the coefficients, the second is the domain, and the third is the
@@ -69,7 +69,7 @@ Printing a polynomial yields the polynomial expression in a more familiar
format::
>>> print(p)
- 1.0 + 2.0·x¹ + 3.0·x²
+ 1.0 + 2.0·x + 3.0·x²
Note that the string representation of polynomials uses Unicode characters
by default (except on Windows) to express powers and subscripts. An ASCII-based
@@ -79,12 +79,12 @@ format can be toggled at the package-level with the
>>> np.polynomial.set_default_printstyle('ascii')
>>> print(p)
- 1.0 + 2.0 x**1 + 3.0 x**2
+ 1.0 + 2.0 x + 3.0 x**2
or controlled for individual polynomial instances with string formatting::
>>> print(f"{p:unicode}")
- 1.0 + 2.0·x¹ + 3.0·x²
+ 1.0 + 2.0·x + 3.0·x²
We will deal with the domain and window when we get to fitting, for the moment
we ignore them and run through the basic algebraic and arithmetic operations.
@@ -92,19 +92,19 @@ we ignore them and run through the basic algebraic and arithmetic operations.
Addition and Subtraction::
>>> p + p
- Polynomial([2., 4., 6.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([2., 4., 6.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p - p
- Polynomial([0.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([0.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
Multiplication::
>>> p * p
- Polynomial([ 1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([ 1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
Powers::
>>> p**2
- Polynomial([ 1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([ 1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
Division:
@@ -115,20 +115,20 @@ versions the '/' will only work for division by scalars. At some point it
will be deprecated::
>>> p // P([-1, 1])
- Polynomial([5., 3.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([5., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
Remainder::
>>> p % P([-1, 1])
- Polynomial([6.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([6.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
Divmod::
>>> quo, rem = divmod(p, P([-1, 1]))
>>> quo
- Polynomial([5., 3.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([5., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> rem
- Polynomial([6.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([6.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
Evaluation::
@@ -149,7 +149,7 @@ the polynomials are regarded as functions this is composition of
functions::
>>> p(p)
- Polynomial([ 6., 16., 36., 36., 27.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([ 6., 16., 36., 36., 27.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
Roots::
@@ -163,11 +163,11 @@ tuples, lists, arrays, and scalars are automatically cast in the arithmetic
operations::
>>> p + [1, 2, 3]
- Polynomial([2., 4., 6.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([2., 4., 6.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> [1, 2, 3] * p
- Polynomial([ 1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([ 1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p / 2
- Polynomial([0.5, 1. , 1.5], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([0.5, 1. , 1.5], domain=[-1., 1.], window=[-1., 1.], symbol='x')
Polynomials that differ in domain, window, or class can't be mixed in
arithmetic::
@@ -195,7 +195,7 @@ conversion of Polynomial classes among themselves is done for type, domain,
and window casting::
>>> p(T([0, 1]))
- Chebyshev([2.5, 2. , 1.5], domain=[-1., 1.], window=[-1., 1.])
+ Chebyshev([2.5, 2. , 1.5], domain=[-1., 1.], window=[-1., 1.], symbol='x')
Which gives the polynomial `p` in Chebyshev form. This works because
:math:`T_1(x) = x` and substituting :math:`x` for :math:`x` doesn't change
@@ -215,18 +215,18 @@ Polynomial instances can be integrated and differentiated.::
>>> from numpy.polynomial import Polynomial as P
>>> p = P([2, 6])
>>> p.integ()
- Polynomial([0., 2., 3.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([0., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p.integ(2)
- Polynomial([0., 0., 1., 1.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([0., 0., 1., 1.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
The first example integrates `p` once, the second example integrates it
twice. By default, the lower bound of the integration and the integration
constant are 0, but both can be specified.::
>>> p.integ(lbnd=-1)
- Polynomial([-1., 2., 3.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([-1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p.integ(lbnd=-1, k=1)
- Polynomial([0., 2., 3.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([0., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
In the first case the lower bound of the integration is set to -1 and the
integration constant is 0. In the second the constant of integration is set
@@ -235,9 +235,9 @@ number of times the polynomial is differentiated::
>>> p = P([1, 2, 3])
>>> p.deriv(1)
- Polynomial([2., 6.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([2., 6.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p.deriv(2)
- Polynomial([6.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([6.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
Other Polynomial Constructors
@@ -253,25 +253,25 @@ are demonstrated below::
>>> from numpy.polynomial import Chebyshev as T
>>> p = P.fromroots([1, 2, 3])
>>> p
- Polynomial([-6., 11., -6., 1.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([-6., 11., -6., 1.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p.convert(kind=T)
- Chebyshev([-9. , 11.75, -3. , 0.25], domain=[-1., 1.], window=[-1., 1.])
+ Chebyshev([-9. , 11.75, -3. , 0.25], domain=[-1., 1.], window=[-1., 1.], symbol='x')
The convert method can also convert domain and window::
>>> p.convert(kind=T, domain=[0, 1])
- Chebyshev([-2.4375 , 2.96875, -0.5625 , 0.03125], domain=[0., 1.], window=[-1., 1.])
+ Chebyshev([-2.4375 , 2.96875, -0.5625 , 0.03125], domain=[0., 1.], window=[-1., 1.], symbol='x')
>>> p.convert(kind=P, domain=[0, 1])
- Polynomial([-1.875, 2.875, -1.125, 0.125], domain=[0., 1.], window=[-1., 1.])
+ Polynomial([-1.875, 2.875, -1.125, 0.125], domain=[0., 1.], window=[-1., 1.], symbol='x')
In numpy versions >= 1.7.0 the `basis` and `cast` class methods are also
available. The cast method works like the convert method while the basis
method returns the basis polynomial of given degree::
>>> P.basis(3)
- Polynomial([0., 0., 0., 1.], domain=[-1., 1.], window=[-1., 1.])
+ Polynomial([0., 0., 0., 1.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> T.cast(p)
- Chebyshev([-9. , 11.75, -3. , 0.25], domain=[-1., 1.], window=[-1., 1.])
+ Chebyshev([-9. , 11.75, -3. , 0.25], domain=[-1., 1.], window=[-1., 1.], symbol='x')
Conversions between types can be useful, but it is *not* recommended
for routine use. The loss of numerical precision in passing from a