summaryrefslogtreecommitdiff
path: root/doc/source/reference
diff options
context:
space:
mode:
Diffstat (limited to 'doc/source/reference')
-rw-r--r--doc/source/reference/arrays.indexing.rst4
-rw-r--r--doc/source/reference/arrays.ndarray.rst8
-rw-r--r--doc/source/reference/arrays.scalars.rst15
-rw-r--r--doc/source/reference/c-api.array.rst8
-rw-r--r--doc/source/reference/maskedarray.baseclass.rst2
5 files changed, 17 insertions, 20 deletions
diff --git a/doc/source/reference/arrays.indexing.rst b/doc/source/reference/arrays.indexing.rst
index b7bc3a655..6a5f428da 100644
--- a/doc/source/reference/arrays.indexing.rst
+++ b/doc/source/reference/arrays.indexing.rst
@@ -36,8 +36,8 @@ objects, the :const:`Ellipsis` object, or the :const:`newaxis` object,
but not for integer arrays or other embedded sequences.
.. index::
- triple: ndarray; special methods; getslice
- triple: ndarray; special methods; setslice
+ triple: ndarray; special methods; getitem
+ triple: ndarray; special methods; setitem
single: ellipsis
single: newaxis
diff --git a/doc/source/reference/arrays.ndarray.rst b/doc/source/reference/arrays.ndarray.rst
index 14d35271e..4c8bbf66d 100644
--- a/doc/source/reference/arrays.ndarray.rst
+++ b/doc/source/reference/arrays.ndarray.rst
@@ -119,12 +119,12 @@ strided scheme, and correspond to memory that can be *addressed* by the strides:
.. math::
- s_k^{\mathrm{column}} = \prod_{j=0}^{k-1} d_j ,
- \quad s_k^{\mathrm{row}} = \prod_{j=k+1}^{N-1} d_j .
+ s_k^{\mathrm{column}} = \mathrm{itemsize} \prod_{j=0}^{k-1} d_j ,
+ \quad s_k^{\mathrm{row}} = \mathrm{itemsize} \prod_{j=k+1}^{N-1} d_j .
.. index:: single-segment, contiguous, non-contiguous
-where :math:`d_j` `= self.itemsize * self.shape[j]`.
+where :math:`d_j` `= self.shape[j]`.
Both the C and Fortran orders are :term:`contiguous`, *i.e.,*
:term:`single-segment`, memory layouts, in which every part of the
@@ -595,8 +595,6 @@ Container customization: (see :ref:`Indexing <arrays.indexing>`)
ndarray.__len__
ndarray.__getitem__
ndarray.__setitem__
- ndarray.__getslice__
- ndarray.__setslice__
ndarray.__contains__
Conversion; the operations :func:`complex()`, :func:`int()`,
diff --git a/doc/source/reference/arrays.scalars.rst b/doc/source/reference/arrays.scalars.rst
index 4acaf1b3b..f76087ce2 100644
--- a/doc/source/reference/arrays.scalars.rst
+++ b/doc/source/reference/arrays.scalars.rst
@@ -248,7 +248,8 @@ Indexing
Array scalars can be indexed like 0-dimensional arrays: if *x* is an
array scalar,
-- ``x[()]`` returns a 0-dimensional :class:`ndarray`
+- ``x[()]`` returns a copy of array scalar
+- ``x[...]`` returns a 0-dimensional :class:`ndarray`
- ``x['field-name']`` returns the array scalar in the field *field-name*.
(*x* can have fields, for example, when it corresponds to a structured data type.)
@@ -282,10 +283,10 @@ Defining new types
==================
There are two ways to effectively define a new array scalar type
-(apart from composing structured types :ref:`dtypes <arrays.dtypes>` from
-the built-in scalar types): One way is to simply subclass the
-:class:`ndarray` and overwrite the methods of interest. This will work to
-a degree, but internally certain behaviors are fixed by the data type of
-the array. To fully customize the data type of an array you need to
-define a new data-type, and register it with NumPy. Such new types can only
+(apart from composing structured types :ref:`dtypes <arrays.dtypes>` from
+the built-in scalar types): One way is to simply subclass the
+:class:`ndarray` and overwrite the methods of interest. This will work to
+a degree, but internally certain behaviors are fixed by the data type of
+the array. To fully customize the data type of an array you need to
+define a new data-type, and register it with NumPy. Such new types can only
be defined in C, using the :ref:`NumPy C-API <c-api>`.
diff --git a/doc/source/reference/c-api.array.rst b/doc/source/reference/c-api.array.rst
index 3574282a4..2a7bb3a32 100644
--- a/doc/source/reference/c-api.array.rst
+++ b/doc/source/reference/c-api.array.rst
@@ -1686,12 +1686,12 @@ Shape Manipulation
different total number of elements then the old shape. If
reallocation is necessary, then *self* must own its data, have
*self* - ``>base==NULL``, have *self* - ``>weakrefs==NULL``, and
- (unless refcheck is 0) not be referenced by any other array. A
- reference to the new array is returned. The fortran argument can
- be :c:data:`NPY_ANYORDER`, :c:data:`NPY_CORDER`, or
- :c:data:`NPY_FORTRANORDER`. It currently has no effect. Eventually
+ (unless refcheck is 0) not be referenced by any other array.
+ The fortran argument can be :c:data:`NPY_ANYORDER`, :c:data:`NPY_CORDER`,
+ or :c:data:`NPY_FORTRANORDER`. It currently has no effect. Eventually
it could be used to determine how the resize operation should view
the data when constructing a differently-dimensioned array.
+ Returns None on success and NULL on error.
.. c:function:: PyObject* PyArray_Transpose(PyArrayObject* self, PyArray_Dims* permute)
diff --git a/doc/source/reference/maskedarray.baseclass.rst b/doc/source/reference/maskedarray.baseclass.rst
index a1c90a45d..f35b0ea88 100644
--- a/doc/source/reference/maskedarray.baseclass.rst
+++ b/doc/source/reference/maskedarray.baseclass.rst
@@ -417,8 +417,6 @@ Container customization: (see :ref:`Indexing <arrays.indexing>`)
MaskedArray.__getitem__
MaskedArray.__setitem__
MaskedArray.__delitem__
- MaskedArray.__getslice__
- MaskedArray.__setslice__
MaskedArray.__contains__