summaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
Diffstat (limited to 'doc')
-rw-r--r--doc/release/1.8.0-notes.rst13
-rw-r--r--doc/source/reference/routines.statistics.rst5
2 files changed, 16 insertions, 2 deletions
diff --git a/doc/release/1.8.0-notes.rst b/doc/release/1.8.0-notes.rst
index c92cf6ebd..5923c7ea3 100644
--- a/doc/release/1.8.0-notes.rst
+++ b/doc/release/1.8.0-notes.rst
@@ -42,6 +42,10 @@ case, now indicates a 0-D iteration and ``op_axes`` being NULL and the old
usage is deprecated. This does not effect the ``NpyIter_New`` or
``NpyIter_MultiNew`` functions.
+The functions nanargmin and nanargmax now return np.iinfo['intp'].min for
+the index in all-NaN slices. Previously the functions would raise a ValueError
+for array returns and NaN for scalar returns.
+
NPY_RELAXED_STRIDES_CHECKING
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is a new compile time environment variable
@@ -145,7 +149,7 @@ arrays instead of only in simple indices. This means that
``array[np.newaxis, [0, 1]]`` will now work as expected.
New functions `full` and `full_like`
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
New convenience functions to create arrays filled with a specific value;
complementary to the existing `zeros` and `zeros_like` functions.
@@ -160,6 +164,13 @@ elements smaller than the sorted elements will placed before the it and all
equal or larger behind it.
This has a time complexity of O(n) compared to O(n log(n)) of a full sort.
+New functions `nanmean`, `nanvar` and `nanstd`
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+New nan aware statistical functions are added. In these functions the
+results are what would be obtained if nan values were ommited from all
+computations.
+
C-API
~~~~~
diff --git a/doc/source/reference/routines.statistics.rst b/doc/source/reference/routines.statistics.rst
index c420705af..64745ff0c 100644
--- a/doc/source/reference/routines.statistics.rst
+++ b/doc/source/reference/routines.statistics.rst
@@ -23,11 +23,14 @@ Averages and variances
.. autosummary::
:toctree: generated/
+ median
average
mean
- median
std
var
+ nanmean
+ nanstd
+ nanvar
Correlating
-----------