summaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
Diffstat (limited to 'doc')
-rw-r--r--doc/neps/missing-data.rst4
-rw-r--r--doc/release/2.0.0-notes.rst12
2 files changed, 11 insertions, 5 deletions
diff --git a/doc/neps/missing-data.rst b/doc/neps/missing-data.rst
index 478fe81bc..49528da41 100644
--- a/doc/neps/missing-data.rst
+++ b/doc/neps/missing-data.rst
@@ -477,7 +477,7 @@ Some examples::
>>> np.sum(a, skipna=True)
11.0
>>> np.mean(a)
- NA('<f8')
+ NA(dtype='<f8')
>>> np.mean(a, skipna=True)
3.6666666666666665
@@ -487,7 +487,7 @@ Some examples::
>>> np.max(a, skipna=True)
array(NA, dtype='<f8', maskna=True)
>>> np.mean(a)
- NA('<f8')
+ NA(dtype='<f8')
>>> np.mean(a, skipna=True)
/home/mwiebe/virtualenvs/dev/lib/python2.7/site-packages/numpy/core/fromnumeric.py:2374: RuntimeWarning: invalid value encountered in double_scalars
return mean(axis, dtype, out)
diff --git a/doc/release/2.0.0-notes.rst b/doc/release/2.0.0-notes.rst
index 0ba7594fe..d50797cb3 100644
--- a/doc/release/2.0.0-notes.rst
+++ b/doc/release/2.0.0-notes.rst
@@ -26,9 +26,10 @@ What works with NA:
* Basic indexing and slicing, as well as full boolean mask indexing.
* All element-wise ufuncs.
* UFunc.reduce methods, with a new skipna parameter.
+ * The nditer object.
* Array methods:
+ ndarray.clip, ndarray.min, ndarray.max, ndarray.sum, ndarray.prod,
- ndarray.conjugate, ndarray.diagonal
+ ndarray.conjugate, ndarray.diagonal, ndarray.flatten
+ numpy.concatenate, numpy.column_stack, numpy.hstack,
numpy.vstack, numpy.dstack
@@ -36,6 +37,8 @@ What doesn't work with NA:
* Fancy indexing, such as with lists and partial boolean masks.
* ndarray.flat and any other methods that use the old iterator
mechanism instead of the newer nditer.
+ * Struct dtypes, which will have corresponding struct masks with
+ one mask value per primitive field of the struct dtype.
* UFunc.reduce of multi-dimensional arrays, with skipna=True and a ufunc
that doesn't have an identity.
* UFunc.accumulate, UFunc.reduceat.
@@ -43,7 +46,10 @@ What doesn't work with NA:
rules NA | True == True and NA & False == False yet.
* Array methods:
+ ndarray.argmax, ndarray.argmin,
- + numpy.repeat
+ + numpy.repeat, numpy.delete (relies on fancy indexing),
+ numpy.append, numpy.insert (relies on fancy indexing),
+ numpy.where,
+
Custom formatter for printing arrays
@@ -66,7 +72,7 @@ where possible, and performs much faster as well.
The function np.concatenate tries to match the layout of its input
arrays. Previously, the layout did not follow any particular reason,
-and depended in an undesirable on the particular axis chosen for
+and depended in an undesirable way on the particular axis chosen for
concatenation. A bug was also fixed which silently allowed out of bounds
axis arguments.